The spectrum of Schrödinger operators
in $L_p(\mathbb{R}^d)$ and $C_0(\mathbb{R}^d)$

R. Hempel
J. Voigt

Supported by Federal Ministry of Science and Research, Austria
The Spectrum of Schrödinger Operators
in $L_p(\mathbb{R}^d)$ and in $C_0(\mathbb{R}^d)$

Rainer Hempel*
Erwin Schrödinger International Institute for Mathematical Physics
Pasteurgasse 6/7
A-1090 Vienna, Austria

Jürgen Voigt
Technische Universität Dresden
Abteilung Mathematik
01062 Dresden, Germany

Introduction

The aim of this paper is to present results on the independence of the spectrum of Schrödinger operators in different spaces. We treat Schrödinger operators of a very general kind, namely $-\frac{1}{2}\Delta$ perturbed by certain measures μ.

In Section 1 we recall what measures can be used and we review results stating the p-independence of the spectrum of the realizations of $-\frac{1}{2}\Delta + \mu$ in $L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$.

In Section 2 we show that the realizations of $-\frac{1}{2}\Delta + \mu$ in spaces of continuous functions, e.g., the bounded uniformly continuous functions or the continuous functions vanishing at infinity, again have the same spectrum, for suitable μ. In fact, this is derived in a much more general context, utilizing the semigroup dual of a Banach space with respect to a strongly continuous semigroup.

In Section 3 it is shown that Shnol’s method of constructing singular sequences can also be employed in a proof of the inclusions $\sigma(H_{2,V}) \subset \sigma(H_{p,V})$ and $\sigma(H_{2,V}) \subset \sigma(H_{C_0,V})$, for suitable potentials V. This establishes the connection between the spectrum in L_p and C_0 and the existence of polynomially bounded generalized eigenfunctions.

*Presented at the meeting by J. Voigt

*On leave from Math. Inst. der Univ. München, Theresienstr. 39, D-8000 München 2
Address after September 1, 1993: Department of Mathematics, University of Alabama in Birmingham, Birmingham, AL 35294
1. Review of L_p-results.

In order to state the results we have to recall some notations. Let

$$M_0 := \{ \mu : \mathcal{B} \to [0, \infty] : \mu \text{ } \sigma\text{-additive, } \mu(B) = 0 \text{ for all sets } B \in \mathcal{B} \text{ with capacity zero} \},$$

where \mathcal{B} denotes the σ-algebra of Borel subsets of \mathbb{R}^d.

For the definition of the extended Kato class $^\ast S_K \subseteq M_0$ of measures and of the constant $c(\mu)$ defined for $\mu \in ^\ast S_K$ we refer to [StV]. We recall that for $\mu_+ \in M_0$, $\mu_- \in ^\ast S_K$ with $c(\mu_-) < 1$ a closed form in $L_2(\mathbb{R}^d)$ is defined by

$$(h - \mu_+\mu_+)[u, v] := \frac{1}{2} \int \nabla u \cdot \nabla v dx - \int u^- v^- d\mu_- + \int u^- v^+ d\mu_+,$$

with domain

$$D(h - \mu_+\mu_+) = \{ u \in W^1_2(\mathbb{R}^d) : \int |u^+|^2 d\mu_+ < \infty \}$$

(u^- denoting a quasi-continuous version of u). The closure of $D(h - \mu_+\mu_+)$ in $L_2(\mathbb{R}^d)$ is of the form $L_2(Y)$, for a suitable set $Y \in \mathcal{B}$. The operator $H_\mu := H_{\mu_+\mu_-}$ is the self-adjoint operator in $L_2(Y)$ associated with $h - \mu_+\mu_+$. It is shown in [StV; Corollary 4.2] that the semi-group e^{tH_μ} on $L_2(Y)$ acts also as a strongly continuous semigroup $U_{p,\mu}^t$ on $L_p(Y)$, for all $p \in [1, \infty)$; the generators of these semigroups will be denoted by $-H_{p,\mu}$. Also, $H_{\infty,\mu} := H_{1,\mu}^+$. The corresponding unperturbed operators (for $\mu = 0$) will be denoted by H_p.

1.1. **Theorem.** With the notations introduced so far, we have

$$\sigma(H_{p,\mu}) = \sigma(H_{2,\mu})$$

for all $p \in [1, \infty]$.

We are going to give an outline of the proof of this result. In order to do so we first collect several facts which are needed in the proof.

1.2. **Remark.** (a) Let $\varepsilon > 0$. There exist constants C, ω such that

$$\| e^{t \varepsilon x} e^{-iH_{p,\mu} t} e^{-\varepsilon x} \|_{p, q} \leq C t^{-\gamma} e^{\omega t}$$

for all $t > 0, 1 \leq p \leq q \leq \infty$, $x \in \mathbb{R}^d$ with $|\xi| \leq \varepsilon$, where $\gamma = \frac{1}{2} (\frac{1}{p} - \frac{1}{q})$. (Here $\| \cdot \|_{p, q}$ denotes the norm in $L(L_p, L_q)$.)

The proof of this fact consists in two steps. In both of these steps it is essential that there exists $a > 1$ such that $a\mu$ is also in the class considered above (in particular, $c(a\mu) < 1$).

(i) One shows the inequality for $x = 0$, using Stein interpolation; cf. [StV; Theorem 5.1 (b)].
(ii) From the fact that the desired statement is true for the unperturbed heat semigroup \((\mu = 0)\) one concludes it for the perturbed semigroup, again using Stein interpolation; cf. [ScV; Remark 3.4 (b), (c)].

(b) Let \(\epsilon > 0, \omega \) be as in (a). Then there exists \(C\) such that

\[
\|e^{\xi x}(H_\mu - w)^{-1}e^{-\xi x}\|_{p,q} \leq C \left(\frac{1}{1 - \gamma} + \frac{1}{-w - \omega} \right)
\]

for all \(w \in \mathbb{R}\) with \(w < -\omega\), \(p \leq q\) with \(\gamma = \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) < 1\), \(|\xi| \leq \epsilon\). Further, \((-\infty, -\omega) \subset \rho(H_{p,\mu})\) for all \(p \in [1, \infty]\), and

\[
(H_{p,\mu} - w)^{-1} = (H_\mu - w)^{-1}
\]

on \(L_p(Y) \cap L_2(Y)\), for \(w < -\omega\).

The proof consists in integrating the inequality in (a) after multiplying by \(e^{wt}\); cf. [HV; Proposition 3.7], [ScV; Remark 3.4 (d)].

1.3. Lemma. ([ScV; Corollary 3.3]) Let \(1 \leq p \leq q \leq \infty\), \(0 < \epsilon' < \epsilon''\). Then there exists \(C \geq 0\) such that for each linear operator

\[
A : L_{\infty,c}(\mathbb{R}^d) \to L_{\infty, loc}(\mathbb{R}^d)
\]

\((L_{\infty,c} \) denoting \(L_{\infty}\)-functions with compact support) satisfying

\[
\|e^{\xi x}Ae^{-\xi x}\|_{p,q} \leq 1 \quad \text{for all} \quad \xi \in \mathbb{R}^d \quad \text{with} \quad |\xi| \leq \epsilon''
\]

one has

\[
\|e^{\xi x}Ae^{-\xi x}\|_{r,s} \leq C
\]

for \(p \leq r \leq q\), \(|\xi| \leq \epsilon'\).

The inclusion \(\rho(H_{p,\mu}) \subset \rho(H_{2,\mu})\) in Theorem 1.1 is obtained as in [HV; section 2], using Remark 1.2 (a) for \(\xi = 0\).

Sketch of the proof of the inclusion \(\rho(H_{2,\mu}) \subset \rho(H_{p,\mu})\) (compare [ScV]). It is sufficient to prove the assertion for all \(p \in [1, 2]\). According to Remark 1.2 (b) we find \(w (-\omega)\), \(C\) such that

\[
\|e^{\xi x}(H_\mu - w)^{-1}e^{-\xi x}\|_{p,q} \leq C
\]

whenever \(1 \leq p \leq q \leq 2, \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) \leq \frac{1}{2}, |\xi| \leq 1\).

Let \(K \subset \rho(H_{2,\mu})\) be compact, \(\bar{K}\) connected, \(K = \bar{K}\), \(w \in K\). Then there exist \(\epsilon \in (0, 1]\) and a constant \(C'\) such that \(K \subset \rho(e^{\xi x}H_{2,\mu}e^{-\xi x})\) for \(|\xi| \leq \epsilon\), and

\[
\|e^{\xi x}(H_{2,\mu} - z)^{-1}e^{-\xi x}\| = \|(e^{\xi x}H_{2,\mu}e^{-\xi x} - z)^{-1}\| \leq C' \quad (|\xi| \leq \epsilon, z \in K).
\]
This follows from perturbation theory and analytic continuation. (Note that the equality
\[e^{\xi z}(H_{2,\mu} - z)^{-1}e^{-\xi z} = (e^{\xi z}H_{2,\mu}e^{-\xi z} - z)^{-1} \]
on \(L_2(Y) \cap L_{2,c}(\mathbb{R}^d)\), whose validity for \(z = w\) is obtained by Laplace transform, has to be extended to \(K\) by analytic continuation. The absence of this argument in [HV] was pointed out to the authors by W. Arendt.)

Using the resolvent equation
\[(H_{2,\mu} - z)^{-1} = (I + (z - w)(H_{2,\mu} - z)^{-1})(H_{2,\mu} - w)^{-1} \]
together with Lemma 1.3 one concludes the existence of \(C^{''}\) such that
\[k e^{\xi z}(H_{2,\mu} - z)^{-1}e^{-\xi z}k_{p,q} \leq C^{''} \]
for \(z \in K, 1 \leq p \leq 2\) with \(\frac{q}{2}(\frac{1}{p} - \frac{1}{q}) \leq \frac{1}{2}, |\xi| \leq \frac{\xi}{2} \).

Iterating this argument one obtains the last inequality for all \(p \in [1,2]\) and small \(|\xi|\). Using this estimate for \(\xi = 0\) and the fact that
\[(H_{2,\mu} - w)^{-1} = (H_{p,\mu} - w)^{-1} \]
on \(L_p \cap L_2(Y)\) one obtains \(K \subset \rho(H_{p,\mu})\).

1.4. Remarks.
(a) A slightly different situation has been treated in [ScV]. In this paper the perturbation \(\mu\) is the sum of a form small distributional part \(\mu_0\) (cf. [HS]) and \(\mu_+ \in M_0\). This implies that the semigroup \((e^{-tH_{\mu}}; t \geq 0)\) acts as a strongly continuous semigroup on \(L_p(Y)\) for \(p_0 \leq p \leq p_0'\) where \(p_0 \in [1,2]\) depends on the form bound of \(\mu_0\) (cf. [BS]). It is then shown that \(\sigma(H_{p,\mu}) = \sigma(H_{2,\mu})\) for all \(p \in (p_0, p_0')\).

(b) The \(p\)-independence of the \(L_p\)-spectrum of elliptic operators on certain Riemannian manifolds was shown in [Stu]. In a similar context the \(p\)-independence for \(1 < p < \infty\) was shown in [Sh; Proposition 2.6].

(c) The \(p\)-independence of spectra has been shown in [Al] for perturbations of certain translation invariant operators.

(d) If \(U(\cdot)\) is a strongly continuous semigroup on \(L_2(\Omega)\) (where \(\Omega \subset \mathbb{R}^d\)) satisfying a Gaussian estimate, then it was shown in [Ar] that the spectra of the generators of the corresponding semigroups on \(L_p(\Omega)\) are \(p\)-independent.

2. The spectrum of \(-\frac{1}{2}\Delta + \mu\) in spaces of continuous functions
We want to show that under suitable hypotheses the spectrum of \(-\frac{1}{2}\Delta + \mu\) in
\[C_0(\mathbb{R}^d) = \{ f \in C(\mathbb{R}^d); f(x) \to 0 (|x| \to \infty) \} \]
(or in other spaces of bounded continuous functions) is the same as the \(L_p\)-spectrum.
It turns out that the main point which is specific about this situation is the question whether \((e^{-tH}; \ t \geq 0)\) acts as a strongly continuous semigroup on \(C_0(\mathbb{R}^d)\). The fact that then coincidence of spectra can be concluded will follow from very general considerations presented next.

Let \(X\) be a Banach space, \((U(t); t \geq 0)\) a strongly continuous semigroup on \(X\), and \(T\) its generator. The semigroup dual of \(X\) is then defined by

\[
X^\odot := \{ x^* \in X^* ; \ t(t)x^* \to x^* (t \to 0) \};
\]

see, e.g., [HP; Chap. XIV], [BB; Sec. 1.4] (where \(X^\odot\) is denoted by \(X_0^\ast\)), [Ne]. (We use the adjoint space \(X^*\) of continuous conjugate linear functionals on \(X\) in order to stay consistent with duality in \(L_2\).)

2.1. Theorem. Let \(Y \subset X^\odot\) be a closed subspace which is invariant under \(U^*(t)\) \((t \geq 0)\). Denote by \(U_Y(\cdot)\) the part of the semigroup \(U^*(\cdot)\) in \(Y\), and by \(T_Y\) the generator of \(U_Y(\cdot)\).

(a) Then \(T_Y\) is the part of \(T^*\) in \(Y\),

\[
D(T_Y) = \{ x^* \in Y \cap D(T^*); \ T^*x^* \in Y \},
\]

\[
T_Y = T^*|D(T_Y).
\]

(b) \(\rho_\infty(T) \subset \rho_\infty(T_Y)\), and \((\lambda - T_Y)^{-1}\) is the part of \(((\lambda - T)^{-1})^*\) in \(Y\), for \(\lambda \in \rho_\infty(T)\). (Here \(\rho_\infty(T)\) denotes the component of \(\rho(T)\) containing a right half plane; and similarly for \(T_Y\).)

(c) If additionally \(Y\) is equi-norming for \(X\), i.e., the norm

\[
\|x\|_Y := \sup \{ | < x^*, x > ; \ x^* \in Y, \ \|x^*\| \leq 1 \} \quad (x \in X)
\]

is equivalent to the original norm in \(X\), then

\[
\rho_\infty(T) = \rho_\infty(T_Y).
\]

Proof. (a) This is known for \(Y = X^\odot\), and the proof carries over to our case (cf. [BB: p. 51], [Ne; Theorem 1.3.3]).

(b) For \(\lambda \in \mathbb{C}\) with \(\text{Re} \lambda\) larger than the type of \(U(\cdot)\), the resolvents of \(T\) and \(T_Y\) are given by the Laplace transform of \(U(\cdot)\) and \(U_Y(\cdot)\), respectively, and therefore

\[
< x^*, (\lambda - T)^{-1}x > = < (\lambda - T_Y)^{-1}x^*, x >
\]

for all \(x \in X\), \(x^* \in Y\). Therefore \((\lambda - T_Y)^{-1}\) is the part of \(((\lambda - T)^{-1})^*\) in \(Y\). This implies that \(((\lambda - T)^{-1})^*\) maps \(Y\) to \(Y\) for all \(\lambda \in \rho_\infty(T)\). By uniqueness we obtain the claimed assertions.

(c) The equivalence of \(\| \cdot \|\) and \(\| \cdot \|_Y\) implies that there exists a constant \(c\) such that
\[\|(\lambda - T)^{-1}\| \leq c \|(\lambda - T_Y)^{-1}\| \quad \text{for all} \quad \lambda \in \rho_\infty(T). \]

This implies \(\partial(\rho_\infty(T)) \subset \sigma(T_Y) \), and therefore \(\rho_\infty(T) = \rho_\infty(T_Y) \).

2.2. Remark

The assumptions made in the previous theorem are satisfied, in particular, for \(Y = X^\odot \). For this case, however, one has \(\rho(T^\odot) = \rho(T) \); cf. [Ne; Theorem 1.4.2].

2.3. Corollary

Assume that \(\mu \) satisfies the hypotheses of Theorem 1.1. Let \(Y \) be a closed subspace of \(L_\infty \) which is equi-norming for \(L_1 \), invariant under \((e^{-tH_1,\mu})^* \) (\(t \geq 0 \)) and such that

\[\|(e^{-tH_1,\mu})^* f - f\|_\infty \to 0 \quad (t \to 0) \]

for all \(f \in Y \). Denote by \(-H_{Y,\mu} \) the generator of the strongly continuous semigroup on \(Y \) induced by \(((e^{-tH_1,\mu})^*; t \geq 0) \). Then

\[\sigma(H_{Y,\mu}) = \sigma(H_{2,\mu}). \]

2.4. Remarks

(a) The semigroup dual of \(L_1(\mathbb{R}^d) \) for the unperturbed Schrödinger semigroup \((e^{-tH_1}; t \geq 0) \) is

\[C_{b,u}(\mathbb{R}^d) = \{ f \in C(\mathbb{R}^d); \text{\textit{f} bounded and uniformly continuous}\}. \]

The generator is then the part of \(-H_\infty \) in \(C_{b,u} \),

\[D(H_{C_{b,u}}) = \{ f \in C_{b,u}(\mathbb{R}^d); H_{C_{b,u}} f = -\frac{1}{2} \Delta f \in C_{b,u} \}. \]

For \(V \in C_{b,u}(\mathbb{R}^d) \), the multiplication operator by \(V \) is a bounded operator in \(C_{b,u}(\mathbb{R}^d) \), and therefore Theorem 2.3 is applicable to \(H + V \) with \(Y = C_{b,u}(\mathbb{R}^d) \).

(b) The space \(C_0(\mathbb{R}^d) \) is invariant under the unperturbed Schrödinger semigroup, and

\[D(H_{C_0}) = \{ f \in C_0(\mathbb{R}^d); H_{C_0} f = -\frac{1}{2} \Delta f \in C_0 \}. \]

For bounded \(V \in C(\mathbb{R}^d) \) the multiplication by \(V \) is a bounded operator on \(C_0(\mathbb{R}^d) \). Therefore Theorem 2.3 is applicable to \(H + V \) with \(Y = C_0(\mathbb{R}^d) \).

(c) For \(V = V_+ - V_-; V_+ \geq 0, V_- \in K_d, V_+ \in K_{d,loc} \) it is shown in [S; Theorem B.3.1] that \(e^{-tH_V} \) maps \(L_\infty \)-functions to continuous functions, for \(t > 0 \). As a consequence,

\[Y := L_1(\mathbb{R}^d)^\odot \]

consists of continuous functions, in this case.
3. An application of Shnol’s method.

In order to establish a connection with the PDE-world, we will now discuss an alternative proof of the inclusions

\[\sigma(H_{p,V}) \supset \sigma(H_{2,V}), \quad \sigma(H_{C_0,V}) \supset \sigma(H_{2,V}). \]

(3.1)

To this end, we will produce rather explicit “Weyl sequences” in \(L_p \) and also in \(C_0 \) which are obtained by applying suitably chosen cut-offs to generalized eigenfunctions associated with the expansion theorem for \(H_{2,V} \) ([B], [S], [PStW]); this requires some mild modifications of Shnol’s method (cf. [Shn], [S; Section C.4], and [HSt]). Therefore, we learn that properties of the Schrödinger operator in Hilbert space \(L_2 \) fully determine the spectra in \(L_p \) and even in \(C_0 \); while estimates for the resolvent kernel \((H_{2,V} - z)^{-1}(x,y) \) give the inclusion \(\varrho(H_{p,V}) \supset \varrho(H_{2,V}) \), the converse inclusion will now be a consequence of the eigenfunction expansion theorem for \(H_{2,V} \). Related ideas are also discussed in [Sh].

It should be stressed, however, that the approach proposed here requires more restrictive assumptions on the potential \(V \), as compared with the “duality and interpolation”-proof described in Section 2. In the following, we will restrict the discussion to the case \(V \in L_\infty(\mathbb{R}^d) \) where it is easy to obtain \(L_p \)-bounds for the gradient of a generalized eigenfunction.

We first collect a few facts (where we always assume that \(V \) is bounded):

1. For \(1 \leq p \leq \infty \), we have ([HV1])

\[D(H_{p,V}) = D(H_p) = \{ u \in L_p; \Delta u \in L_p \}. \]

(3.2)

If, more strongly, \(V \) is bounded and continuous, then (cf. Section 2)

\[D(H_{C_0,V}) = D(H_{C_0}) = \{ u \in C_0; \Delta u \in C_0 \}. \]

(3.3)

2. From the generalized eigenfunction expansion theorem for \(H_{2,V} \) ([B], [S], [PStW]), we can draw the following conclusion: for any \(\mu \in \sigma(H_{2,V}) \) and any \(\varepsilon > 0 \), there exists a \(\lambda \in (\mu - \varepsilon, \mu + \varepsilon) \) and a (non-trivial) distributional solution \(u \) of the PDE

\[-\frac{1}{2}\Delta u + Vu = \lambda u, \]

(3.4)

satisfying a polynomial growth bound

\[|u(x)| \leq c_1(1 + |x|)^K, \]

(3.5)

with some constants \(c_1 > 0 \) and \(K \in \mathbb{N} \). For \(V \) bounded, it is also known that \(u \) is (equivalent to) a continuous function (cf., e.g., [S]).

3. To control the cut-off errors, we need an \(L_p \)-bound on \(\nabla u \), for \(u \) satisfying (3.4), (3.5). Note that there is no \(L_p \)-analogue of the \(L_2 \)-gradient bound given in
Here we proceed as in [HV1], using an argument of L. Schwartz, to obtain the following lemma.

3.1. Lemma. Let \(p \in [1, \infty] \), and suppose that \(\Omega \subseteq \Omega' \) are open sets in \(\mathbb{R}^d \) with the property that \(\text{dist}(\Omega, \partial\Omega') \geq 1 \). Then there exists a constant \(C = C(p) \), which is independent of both \(\Omega \) and \(\Omega' \), such that

\[
\| \nabla u \|_{L_p(\Omega)} \leq C \left(\| u \|_{L_p(\Omega')} + \| \Delta u \|_{L_p(\Omega')} \right),
\]

for all \(u \in L_p(\Omega) \) with the property that \(\Delta u \in L_p(\Omega) \).

Proof. We proceed as in [HV1]: letting \(T \) denote the usual fundamental solution for \(-\Delta \), and picking some \(\phi \in C^\infty_c(\mathbb{R}^d) \) with support in the unit ball and \(\phi(x) = 1 \) for \(|x| \leq 1/2 \), we have

\[
\nabla u = (\nabla(\phi T)) \ast \Delta u - \nabla \phi \ast u,
\]

(3.7)

(\text{where } \zeta = (\Delta \phi)T + 2\nabla \phi \cdot \nabla T \in C^\infty_c(\mathbb{R}^d))\), and the required estimate follows from Young’s inequality ([RS]). Furthermore, it is clear from eq. (3.7) that \(\nabla u \) is continuous, provided \(u \) and \(\Delta u \) are continuous functions.

Now let \(u \) be a (continuous) generalized eigenfunction of \(H_2 \) and \(\varphi \in C^\infty_c(\mathbb{R}^d) \). Then it follows from Lemma 3.1 and \(\Delta(\varphi u) = \varphi \Delta u + 2\nabla \varphi \nabla u + (\Delta \varphi)u \) that \(\varphi u \) will belong to the domain of \(H_p \), for \(1 \leq p \leq \infty \). Similarly, if \(V \) is bounded and continuous, then \(\varphi u \) will belong to the domain of \(H_{C_0;V} \).

(4) Central to Shnol’s method is the observation that the growth bound (3.5) implies that the \(L_2 \)-norm of \(u \), considered on a suitable sequence of balls, will not grow too rapidly (cf. [S]). While the exposition given in [S; Section C.4] can directly be carried over to the \(L_p \)-case for \(1 \leq p < \infty \), it has to be modified for \(p = 1 \) and, similarly, also for the space \(C_0 \). We therefore change the scenario used in [S] and consider

\[
\mathcal{E}_n = \{ x \in \mathbb{R}^d; \ |x| < 2^n \}, \quad \mathcal{F}_n = \mathcal{E}_{n+1} \setminus \mathcal{E}_n \quad (n \in \mathbb{N}).
\]

(3.8)

We then have the following lemma.

3.2. Lemma. Let \(1 \leq p \leq \infty \), and let \(u \) be as in (3.5). Let \(a > 2 \) and set \(c_2 = c_2(p) = a^{N+\frac{2}{p}} \). Then there exists a sequence \((n_j)_{j \in \mathbb{N}} \subseteq \mathbb{N}, \ n_j \to \infty \), such that

\[
\left\| u_{|\mathcal{F}_{n_j}} \right\|_p \leq c_2 \left\| u_{|\mathcal{E}_{n_j}} \right\|_p \quad (j \in \mathbb{N}).
\]

(3.9)

Proof. If the statement of the lemma were not true, there would exist some \(n_0 \) such that

\[
\left\| u_{|\mathcal{F}_{n}} \right\|_p \geq c_2 \left\| u_{|\mathcal{E}_{n}} \right\|_p > 0 \quad (n \geq n_0),
\]

(3.10)
so that
\[\|u|_{V_n}\|_p \geq \|u|_{F_n-1}\|_p \geq c_2 \|u|_{V_{n-1}}\|_p \quad (n > n_0). \] (3.11)

This leads to
\[\|u|_{V_n}\|_p \geq c_2^{n-n_0} \|u|_{V_{n_0}}\|_p \quad (n > n_0), \] (3.12)
in contradiction with the polynomial growth bound of \(u\). \]

With these preparations, it is now easy to prove the inclusions stated in eq. (3.1).

Proposition 3.3. Let \(V \in L^\infty(R^d)\). Then \(\sigma(H_{p,V}) \supset \sigma(H_{2,V})\), for all \(p \in [1, \infty]\). If, moreover, \(V\) is (bounded and) continuous, then \(\sigma(H_{C_0,V}) \supset \sigma(H_{2,V})\).

Proof. We first choose a function \(\varphi \in C_c^\infty(-2, 2)\) with the property that \(\varphi(x) = 1\), for \(|x| \leq 4/3\), and \(\varphi(x) = 0\), for \(|x| \geq 5/3\), and we define
\[\varphi_n(x) = \varphi(2^{-n}|x|), \quad x \in R^d. \]

Then \(G_n := \text{supp}(\nabla \varphi_n) \subset F_n\) and \(\text{dist}(G_n, \partial F_n) \geq 1\), for \(n \geq 2\). Furthermore, we have \(|\nabla \varphi_n|_\infty \leq c_1 2^{-n}\) and \(|\Delta \varphi_n|_\infty \leq c_1 2^{-2n}\).

Now let \(\mu \in \sigma(H_{2,V})\) be given, and let \(\varepsilon > 0\). By what was said in point (2), there exists some \(\lambda \in (\mu - \varepsilon, \mu + \varepsilon)\) and a (non-trivial) generalized eigenfunction \(u\) of \(H_{2,V}\) that satisfies (3.4), (3.5). For given \(p \in [1, \infty]\), we will prove that there exists a sequence \((n_j) \subset N\) so that
\[\|\!(H_{p,V} - \lambda)(\varphi_{n_j} u)\!\|_p / \|\varphi_{n_j} u\|_p \to 0, \quad j \to \infty. \] (3.13)

Therefore, \(H_{p,V} - \lambda\) does not have a bounded inverse, whence \(\lambda \in \sigma(H_{p,V})\). Taking \(\varepsilon \to 0\) then gives \(\mu \in \sigma(H_{p,V})\).

Applying Lemma 3.2 to \(u\), we find a constant \(c_2\) and a sequence \((n_j)\) such that (3.9) holds. As \(\varphi_{n_j} u \in D(H_{p,V})\) and \((H_{p,V} - \lambda)(\varphi_{n_j} u) = -\langle \Delta \varphi_n, \Delta u \rangle\), we have
\[
\|\!(H_{p,V} - \lambda)(\varphi_{n_j} u)\!\|_p \leq \|\nabla \varphi_{n_j}\|_\infty \|\nabla u|_{G_n}\|_p + \|\Delta \varphi_{n_j}\|_\infty \|u|_{G_n}\|_p \\
\leq c_3 2^{-n_j} \left(\|u|_{F_n}\|_p + \|\Delta u|_{F_n}\|_p\right),
\]
by Lemma 3.1. From \(V \in L^\infty\) and \(\frac{1}{2}\Delta u = (V - \lambda)u\) we now conclude that
\[
\|\!(H_{p,V} - \lambda)(\varphi_{n_j} u)\!\|_p \leq c_6 2^{-n_j} \|u|_{F_n}\|_p \leq c_7 2^{-n_j} \|u|_{\mathcal{F}_n}\|_p \leq c_8 2^{-n_j} \|\varphi_{n_j} u\|_p,
\]
and the result follows.

The proof in the case of the space \(C_0\) is essentially identical with the \(p = \infty\) proof and omitted. \]

Acknowledgements. R. Hempel would like to thank T. Hoffmann-Ostenhof for the kind invitation to the Erwin Schrödinger Institute at Vienna.
References.

10

