
Erwin Schrödinger International Institute
for Mathematical Physics

2013



Erwin Schrödinger International Institute  
for Mathematical Physics
Boltzmanngasse 9
1090 Vienna / Austria 
T +43-1-4277-28301 
F +43-1-4277-9283
secr.esi@univie.ac.at
www.esi.ac.at

1 / esi 2013

contents

Preface—Turning Over the Page ..................................................................................................................................................................... 2

Erwin Schrödinger International Institute  
for Mathematical Physics—Structure and Activities ........................................................................................... 5

At the Interface of Mathematics and Physics

Some Thoughts on the Fruitful and Ongoing Interaction  
Between Mathematics and Physics
by Wendelin Werner ................................................................................................................................................................................................................  10

Algebras, Groups and Strings
by Peter Goddard ............................................................................................................................................................................................................................  12

A Deeper Union? 
Poincaré on Mathematics and Mathematical Physics
by Jeremy Gray .....................................................................................................................................................................................................................................  16

A Physicist Involved in Purely Algebraic Research: 
The Case of H. B. G. Casimir
by Martina R. Schneider .................................................................................................................................................................................................  21

Changing Views—Images and Figures of Thought 
in the Mathematical Sciences
by Joachim Schwermer ........................................................................................................................................................................................................  25

Scientific Activities

Thematic Programmes ......................................................................................................................................................................................................  32
Research in Teams Programme .....................................................................................................................................................................  33
Junior Research Fellowship Programme ...................................................................................................................................  34
Summer Schools .............................................................................................................................................................................................................................  35
Impressions ................................................................................................................................................................................................................................................  36
Senior Research Fellowship Programme ..................................................................................................................................  38

Gathering Evidence: My Time as a Senior Research Fellow
by James W. Cogdell ..................................................................................................................................................................................................................  39

Data and Statistics ............................................................................................................................................................................................................................  44



3 / esi 20132 / esi 2013

preface preface

Preface―Turning Over the Page
by Joachim Schwermer

Restart. In October 2010, when the Erwin 
Schrödinger International Institute for Math- 
ematical Physics (esi) had been in existence as an 
independent research institute since 1993, the 
scientific directorate and the international commu-
nity of scholars had to learn with great distress of  
the intention of the government of Austria to cease 
funding for the esi. Due to budgetary measures 
affecting a large number of independent research 
institutions in Austria, funding of the esi would be 
terminated as of January 1st, 2011. Since its start it 
was the mission of the esi to advance research in 
mathematics, physics and mathematical physics at 
the highest international level through fruitful 
interaction between scientists from these disciplines. 
An abrupt end for the scientific activities of the 
Institute and the closure of the esi appeared on the 
horizon. Weeks of trembling uncertainty followed, 
mixed with signs of a solution in which the Univer- 
sity of Vienna would be involved. In the wake of  
a protest action by renowned scholars and academic 
institutions worldwide, an agreement was achieved 
in January 2011 that the esi could continue to exist 
but now as a research centre (“Forschungsplatt
form”) at the University of Vienna. As a partner in 
this agreement the Ministry of Science and Research 
(bmwf) guaranteed to fund the “new” esi through 
the University yearly with a reduced budget until 
2015. At a time when pure research and scholarly 
activities are undervalued, the opportunities for 
scholars and young researchers that the Institute 
provides have never been more necessary. The 
University of Vienna took the chance and created  
a home for “one of the world’s leading research 
institutes in mathematics and theoretical physics”,  
as Peter Goddard, the chair of the international 
review committee for the Institute, commissioned  
by the bmwf, and its members put it in 2010 in  
a letter to the Ministry.

Stabilization. With this new institutional framework 
in place since June 2011, it was the main task of  

the new governing board of the esi, called the 
“Kollegium”, to carry on the mission of the esi  
and to retain its international reputation. These  
aims include, in particular, to support research at  
the University of Vienna, to contribute to its inter- 
national visibility and appeal, and to stimulate  
the scientific environment in Austria. Setting aside 
all the technical issues the transition process of  
the esi involved, and which had to be taken care  
of, the esi could begin restoring its fundamental 
scientific activities. This was and still is the prevalent 
task: striving to be excellent and thereby keeping its 
position within the international scientific commu-
nity of scholars as a research institute with a specific 
unique character. The esi is a place that is very con- 
ducive to research and, at the same time, integrates 
scientific education and research in mathematics  
and mathematical physics.

In retrospect, though the planning horizon  
was very short, the Thematic Programmes, scheduled 
already far ahead for 2011 and 2012, turned out in 
the end to be successful scientific events. Addition-
ally, various workshops and other activities could be 
solicited for the year 2012 on short notice, involving, 
in particular, young researchers who came to the 
Institute for the first time as organizers. In addition, 
by January 1, 2012, the Erwin Schrödinger Institute 
had established the Research in Teams Programme  
as a new component in its spectrum of scientific 
activities.

This booklet. With the 20th anniversary of the esi 
occurring precisely at this critical time, it is neces- 
sary to utilize this moment, as it were, not only to 
celebrate the rich heritage of the Institute but also  
to position us for the future. Specifically, this booklet 
serves as an overview of the institutional structure  
of the Erwin Schrödinger International Institute for 
Mathematical Physics, turned into a research centre 
at the University of Vienna in June 2011, and the 
various programmatic pillars of its scientific activ- 
ities. Recollections of scientists involved in some  

of these activities add an important personal 
perspective to this catalogue of possible scholarly 
experiences.

In view of the strategic exchanges between 
mathematics and mathematical physics that have 
occurred over the course of the last decades and 
even beyond, one finds personal reflections of 
scientists on their experiences as scholars whose 
work is rooted in mathematics and physics. They 
found a creative way to capture their thoughts re- 
garding the interaction between mathematics and 
mathematical physics and specific advances in their 
work. In the same vein, historical case studies deal- 
ing with fundamental facets or specific develop-
ments in which the interrelations of mathematics 
and physics have unfolded extend the discussion. 
Another note follows the interplay between thought 
and images in the mathematical sciences and how 
visual thinking may function in the creative process 
in mathematics, physics and their crossroads.

Finally, a concluding section in this booklet 
documents to some extent the scientific activities of 
the esi, starting from its beginnings. The Institute 
has always remained true to its commitment: pro- 
moting and supporting original scholarship in the 
mathematical sciences.

Securing the future. The Erwin Schrödinger Inter
national Institute for Mathematical Physics fills a 
unique role in (post-) graduate education and sci- 
entific research in mathematics and mathematical 
physics, and in Austria, in particular. However, one 
has to give careful consideration to ways in which 
the esi arrangements might be made more stable  
as it goes into a period of various challenges re- 
garding its financial resources. As mentioned,  
the Ministry has only guaranteed to fund the esi 
through the University until 2015. Thus, in the near 
future a fundamental decision has to be reached  
as to whether the government of Austria and the 
University of Vienna are prepared to host and  
fund an institution like the esi, engaged as it is in 
fundamental research in mathematics and physics. 
Due to the lack of sufficient funding schemes in 
Austria in such cases, the usual mechanisms of  
third party funding are not feasible in this case.  
The esi is, of course, firmly bound to seeking funds 
from other sources but it is only in the position to 
complement adequate basic financial support in  
this way. With regard to the latter point, as a first 
step, the Simons Foundation recently approved 

funding for the Erwin Schrödinger International 
Institute for Mathematical Physics to support the 
five-year appointment of a Simons Junior Professor 
in Mathematics or Mathematical Physics.

It is the Institute’s foremost objective to ad- 
vance scientific knowledge ranging over a broad 
band of fields and themes in mathematics and 
theoretical physics. Creating a space where fruitful 
collaborations and the exchange of ideas between 
scientists can unfold is decisive. With the esi now 
being a research centre within the University of 
Vienna, the best way of achieving this is to ensure 
that the esi continues to interweave leading inter- 
national scholars and the local scientific community. 
The research and the interactions that take place at 
the Institute will have a lasting impact on those  
who get their scientific education in Vienna.

Joachim Schwermer
Director
Erwin Schrödinger International Institute 
for Mathematical Physics
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The structure of the esi

ESI―Structure and Activities
by Joachim Schwermer

1. The Institute and its Mission

The Erwin Schrödinger International Institute for 
Mathematical Physics (esi) was founded in Vienna, 
Austria, in 1992, and became fully operational in 
April 1993. On June 1, 2011, the esi assumed its role 
as a research centre within the University of Vienna. 
The mission of the Institute is:
• �to advance research in mathematics, physics and 

mathematical physics at the highest international 
level through fruitful interaction between scien- 
tists from these disciplines;

• ��to support research at the University of Vienna  
and surrounding universities and to stimulate the 
scientific environment in Austria.

The transition of the Erwin Schrödinger Institute 
from an independent research institute to a “For- 
schungsplattform” at the University of Vienna was  
a complicated process. There are far-reaching dif- 
ferences in operation as a consequence of the uni- 
versity’s involvement in the running of the Institute. 
This includes issues concerning payments to par- 
ticipants, modifications to the premises and future 
funding prospects. However, the Institute has con- 
tinued to function, even flourish, during the radical 
changes of its status.

The Institute currently pursues its mission  
in a number of ways:
• ��Primarily, by running four to six thematic pro- 

grammes each year, selected about two years in 
advance on the basis of the advice of the Interna-
tional esi Scientific Advisory Board.

• ��By organizing workshops and summer schools at 
shorter notice.

• ��By a programme of Senior Research Fellows (srf), 
who give lecture courses at the esi for graduate 
students and postdocs.

• ��By a programme of Research in Teams, which 
offers teams of two to four Erwin Schrödinger 
Institute Scholars the opportunity to work at the 
Institute for periods of one to four months, in 
order to concentrate on new collaborative research 
in mathematics and mathematical physics.

• ��By inviting individual scientists who collaborate 
with members of the local scientific community.

Even through the transition period the esi had to  
go through in the years of 2010 and 2011, the esi  
has remained a leading international centre for re- 
search in the mathematical sciences. This position 
has been achieved with a minimal deployment of 
resources, financial and human, especially when 
compared with similar institutes in other countries.

2. The Institute’s Scientific Management and  
its Resources

The arrangements that provide for the scientific 
direction and administration of the Institute are 
perhaps among the noteworthy features of the esi. 
Indeed, the Institute is run in a quite minimalist 
fashion.

The organizational structure of the esi is as 
follows: The esi is governed by a board (“Kolle-
gium”) of six scholars, necessarily faculty members 
of the University of Vienna. These members of the 
board are appointed by the President (Rektor) of the 
University after consultations with the Deans of the 
Faculties of Physics and Mathematics. It currently 
consists of Goulnara Arzhantseva (Mathematics), 
Adrian Constantin (Mathematics), Piotr T. Chruściel 
(Physics), Joachim Schwermer (Mathematics), Frank 
Verstraete (Physics), and Jakob Yngvason (Physics). 
All members of the Kollegium still act as Professors 
at the University.

In addition, the Scientific Advisory Board of 
the esi plays a crucial role in keeping this Institute 
alive scientifically. The members of the Scientific 
Advisory Board of the esi, which currently consists 
of seven international scholars, have a variety of 
tasks: they assess the programme proposals sub- 
mitted to the esi, they point out interesting scien- 
tific developments in the area of mathematics and 
mathematical physics, and suggest topics and pos- 
sible organizers for future activities of the Insti- 
tute, and, most importantly, during the yearly 
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meeting, they review—and criticize—the scientific 
performance of the Institute during the past year 
and make suggestions for possible improvements. 
Though the name of the Institute only contains 
mathematical physics as the subject of concern, 
mathematics plays an equally important role in its 
scientific activities.

On June 1, 2011, the Scientific Advisory  
Board of the esi was restructured. Only scholars 
who are not affiliated with a scientific institution in 
Austria can be appointed as members. Thus, at the 
same time, its composition changed. For the sake  
of continuity, John Cardy (Oxford), Horst Knörrer 
(eth Zürich), Vincent Rivasseau (Paris) and Herbert 
Spohn (München) were reappointed. As new 
members Isabelle Gallagher (Paris), Helge Holden 
(Trondheim) and Daniel Huybrechts (Bonn) joined 
the Board, starting January 2012.

The day-to-day functioning of the esi is 
overseen by the Director. The Director is appointed 
by and accountable to the Rektor of the University. 
Besides the ongoing oversight of the esi, the Di- 
rector chairs the Kollegium, represents the esi at 
meetings of the European Institutes and has re- 
sponsibility for the budget of the esi. The Director 
makes sure the esi functions in a way manner with 
its mission.

The administrative staff of the Institute, cur- 
rently consisting of three people, two of them work- 
ing on part time basis, is also extremely lean but very 
efficient in handling the approximately 450 visitors 
per year.

Situated at Boltzmanngasse 9 in Vienna, the  
esi is housed in the upper floor of a two hundred-
year-old Catholic seminary. This building provides a 
quiet and secluded environment. By its distinctive 
character, the esi is a place that is very conducive to 
research.

The Institute is still funded by the Austrian 
Federal Ministry for Science and Research, via the 
University of Vienna, but it works on the basis of 
much smaller resources financially than in the years 
before 2011.

3. Thematic Programmes and Workshops

The Institute’s scientific activities are centred around 
four to six larger thematic programmes per year. 
Planning for these programmes typically begins  
two years in advance. About three quarters of the 

scientific budget are used for these activities each 
year. In addition, smaller programmes, workshops 
and conferences are organized at shorter notice, as 
well as visits of individual scholars who collaborate 
with scientists of the University of Vienna and the 
local community.

The list (see page 44) of research areas in math- 
ematics, physics and mathematical physics covered 
by the scientific activities of the Erwin Schrödinger 
Institute in the years 1993 to 2012 shows a remark-
able variety.

The pages of the annual esi report, available  
on its web page, provide ample evidence that the 
high quality of the scientific programmes was sus- 
tained and, in particular, undiminished during and 
shortly after the radical changes the Institute had to 
face. Longer thematic programmes and the open 
approach to research they offer and encourage form 
a fundamental pillar of the work of the esi. The 
Institute provides a place for focused collaborative 
research and tries to create the fertile ground for 
new ideas.

It is generally noted, as already the Review 
Panel of the esi pointed out in its report in 2008, 
that over the last years the esi has widened the  
range of its thematic programmes and other sci- 
entific activities from being originally more nar- 
rowly focused within mathematical physics. The 
Scientific Directorate has increased the scope  
of the activities mounted by the Institute into areas 
of mathematics more remote at present from theo- 
retical physics. This process will continue in the 
same fashion, with special emphasis on the fruitful 
interactions between mathematics and mathemati- 
cal physics.

The themes of the programmes which are in 
place in 2013 range from “The Geometry of Topo- 
logical d-Branes”, “Jets and Quantum Fields for  
lhc and Future Colliders” over “Forcing, Large 
Cardinals and Descriptive Set Theory” to “Heights  
in Diophantine Geometry, Group Theory and 
Additive Combinatorics”.

In 2014 the esi will host four thematic 
programmes, the first one dealing with “Modern 
Trends in Topological Quantum Field Theory”, 
followed by one centred around “Combinatorics, 
Geometry and Physics”. The programmes “Topo
logical Phases and Quantum Matter” and “Minimal 
Energy Point Sets, Lattices and Designs” cover the 
second half of the year, supplemented by various 
workshops.

4. Senior Research Fellowship Programme

In order to stimulate the interaction of the Institute’s 
activities with the local community, the Institute 
initiated a Senior Research Fellowship Programme 
in 2000. Its main aim is attracting internationally 
renown scientists to Vienna for longer visits. These 
scholars would interact with graduate students and 
postdocs in Vienna, in particular, by offering lecture 
courses on an advanced graduate level. This pro- 
gramme enables Ph.D. students and young post- 
doctoral fellows at the surrounding universities to 
communicate with leading scientists in their field  
of expertise.

5. ESI Scholars

By January 1, 2012, the Erwin Schrödinger Institute 
had established the Research in Teams Programme  
as a new component in its spectrum of scientific 
activities. The programme offers teams of two to four 
Erwin Schrödinger Institute Scholars the opportunity 
to work at the Institute in Vienna for periods of one 
to four months, in order to concentrate on new 
collaborative research in mathematics and math-
ematical physics. The interaction between the team 
members is a central component of this programme. 
The number of proposals, on themes of topical in- 
terest, was high. However, due to limited resources, 
the Kollegium could only accept four of these ap- 
plications for the year 2012. The first scholars within 
this programme were at the esi in June 2012. Other 
teams are already accepted for the year 2013.

Of course, by invitation only, the esi continues 
to have individual scientists as visitors who pursue 
joint work with local scientists. In some cases these 
collaborations originate from previous thematic pro- 
grammes which took place at the esi.

6. Junior Fellows and Summer Schools

Funding from the Austrian Federal Ministry for 
Science and Research (bmwf) enabled the Institute 
to establish a Junior Research Fellowship Pro-
gramme (jrf). Its purpose was to provide support 
for advanced Ph.D. students and postdoctoral 
fellows to allow them to participate in the activities 
of the esi. Grants were given for periods between 
two and six months. This programme was very 

successful and internationally held in high esteem 
but unfortunately it came to an end because funding 
by the bmwf was terminated with the end of 2010. 
The presence of the Junior Research Fellows at the 
Institute, together with the Fellows of the European 
Post-Doc Institute, had a very positive impact on the 
esi’s scientific atmosphere through their interaction 
with participants of the thematic programmes, 
through lively discussions with other postdocs and 
also through the series of jrf seminars. In conjunc-
tion with the jrf Programme, the esi had regularly 
offered Summer Schools which combined series of 
introductory lectures by international scholars with 
more advanced seminars in specific research areas. 
However, even though the jrf programme had to  
be discarded, the Institute continues its long term 
policy of vertical integration of scientific education 
and research. Summer Schools are still essential 
components of the scientific activities of the esi.

In 2010, a “May Seminar in Number theory” 
took place to introduce young researchers to excit- 
ing recent developments of current research at the 
crossroads of arithmetic and other fields. During  
the summer 2011 a school dealt with recent devel- 
opments in mathematical physics. Jointly with the 
European Mathematical Society (ems) and the 
International Association of Mathematical Physics 
(iamp) the esi organized in 2012 the “Summer 
School on Quantum Chaos”. This Instructional 
Workshop attracted more than 45 graduate students, 
postdocs and young researchers from all over the 
world. A poster session accompanied this event.

7. Conclusion 

With the esi now being a research centre within  
the University of Vienna, the best way of benefiting 
the local community is to ensure that the esi con- 
tinues to function at the highest level internation- 
ally and thus attract the world’s leading scholars  
to Vienna where their presence will enhance and 
stimulate research further. This has been and still is 
the approach successfully followed by the esi. ■
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Some Thoughts on the Fruitful  
and Ongoing Interaction Between  
Mathematics and Physics

structures, that seem to have little direct appli- 
cations or even little concrete meaning in the real 
outside world. Of course, each mathematician has 
his/her personal history and motivations, but most 
of the time, they are to a large extent emotionally 
driven (the recent exhibition by the Fondation 
Cartier “Mathématiques, un dépaysement soudain” 
illustrates this very well). Mathematics is, for many of 
us, a way to express or capture some aspects of our 
interaction with the outside world, and the questions 
we study are often in some sense a continuation of 
those questions that we faced as children or teen- 
agers, when learning about how our physical world 
is structured and functions. After all, the experimen-
tal exploration of the outside world as a baby, when 
one learns how to move arms in space, where one 

starts to walk and sense gravity, when one starts to 
look and feel shapes, textures, colors, occurs simulta- 
neously with some sort of intuitive conceptualization 
of these experiments in our brain, and one could 
therefore even argue that the interaction between 
physics and mathematics is a natural continuation  
of this very natural dual discovery of the physical 
world and its interpretation/understanding.

This relation can be very direct (like for in- 
stance trying to understand mathematical aspects  
of relativity, which is still an ongoing hot topic in 
mathematics) or indirect, more based on analogies 
or on abstract generalizations. It is very rare to find  
a recent important mathematical result that is not 
related in some way or the other to physics. A look  
at the list of prize-winners (for instance for the Abel 
Prize, Shaw Prize, Wolff Prize etc.) backs this 
assertion very convincingly.

My own personal scientific life has in fact not 
only been shaped by the motivation that comes from 
the relation to physics of the type that I have just 
described, but also more directly from the contact 
with physics as an academic field. Indeed, a number 
of the questions that I have been studying have been 
initially either studied or raised by physicists, with 
motivations that range from the experimental study 
of phase transitions (how spontaneous magnetiza-
tion of iron depends on the temperature, say) to 
theoretical questions about the nature of interac- 
tions (related to field theory). In fact, in the par- 
ticular topic that I have been working on, we were 
very fortunate that theoretical physicists such as 
Bertrand Duplantier or John Cardy actually “came to 
us” with precise mathematical challenges, i.e. precise 
statements (“conjectures”) that were calling not only 
for a rigorous proof, but also for an intuitive under- 
standing that the physical theories were not able to 
fully provide. In fact, together with Greg Lawler and 
Oded Schramm, we also worked on a prediction of 
Benoît Mandelbrot, who can also be viewed as a 
mediator between natural sciences and mathematics 
(see his book “The fractal geometry of nature”).  
In this area, key mathematical objects that have led 
to new insight have been the Schramm-Loewner 
Evolutions (invented by Oded Schramm), that pro- 
vide random ways to draw curves in the plane, 
making use of conformal transformations of the 
plane (these are the angle-preserving distortions  
of portions of the plane), as they turn out to be  
the only natural candidates to describe curves that 
appear in various parts of physics, for instance as 

boundaries between different randomly created 
domains, or as level lines of randomly created 
mountains.

This interaction between mathematical and 
physical academic communities is not such an easy 
one. To start with, the vocabulary used, the back- 
ground material that is assumed to be known, the 
rules of what information a paper should contain, 
are very different, so that it is extremely difficult  
for a mathematician to extract the useful needed 
information for his research out of a physics paper, 
and vice-versa. We all spent quite frustrating and 
long hours looking at a physics paper without 
understanding its logic. The direct face-to-face 
interaction can however be much more productive, 
but it requires time, and repetition. Just one 
conversation is often not enough… In that respect, 
mathematicians in our area have been particularly 
fortunate to be able to benefit from such timely 
programs that did take place at places such as the  
esi or the Isaac Newton Institute for Mathematical 
Sciences in Cambridge, where one could meet our 
friends from theoretical physics, and interact with 
them, in the lecture room as well as in office dis- 
cussions or around a glass of beer. This has certainly 
helped a lot in the exchange of ideas.

When one tries to think about scientific 
strategy, organization and funding of the academic 
life, the main motivation is to see how to help and 
stimulate novel creative scientific ideas. It is impor- 
tant to pay a salary to academics and more generally 
to provide them with good working conditions, but 
it is also essential to put them in the right “environ-
ment”, where they can interact with those other 
scientists that would bring them some fresh, new 
and maybe unsettling approaches to the questions 
that they are looking at, to feed their curiosity. This 
is why such places like the esi have played, play and 
will continue to play an essential part in the future 
developments of our disciplines. ■

Wendelin Werner is a 
German-born French 
mathematician working in  
the area of self-avoiding 
random walks, Schramm-
Loewner evolution, and related 
subjects in probability and 
mathematical physics. In 
2006, at the 25th International 
Congress of Mathematicians 
in Madrid, he received the 
Fields Medal. Werner became 
a member of the French 
Academy of Sciences in 2008. 
He is professor at the Uni- 
versity Paris-Sud and part- 
time at the École Normale 
Supérieure in Paris.

by Wendelin Werner

Sample of a large critical 
percolation cluster: under- 
standing such random shapes 
in the fine-mesh limit has 
been the topic of numerous 
works in the physics and 
mathematics communities.
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T he mutual cross-fertilization between math-
ematics and physics is a well-documented fact, 
and has been a constant feature of the history 

of science. In today’s fast-changing world, where 
spectacular progress is been made in the under-
standing of Life Science, and where the computing 
power provided by technology opens new doors, it 
can be questioned whether the progress driven by 
this privileged interaction between mathematics and 
physics belongs to the past or whether it is still, and 
maybe even more than ever, a major driving force in 
the evolution of these two disciplines. In these few 
lines, I would like to explain why, based on my 
personal mathematical experience, I believe that the 
latter case holds, and why some institutions such as 
the Erwin Schrödinger Institute have a pivotal role 
to play in this direction.

A first preliminary question is to wonder what 
the reasons are that lead some minds to choose to 
devote their life to study abstract mathematical 
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Algebras, Groups and Strings

T he birth of string theory, or more accurately  
its conception, was announced in the Hofburg 
in Vienna forty-five years ago, in the late sum- 

mer of 1968. Gabriele Veneziano proposed to the 
14th International Conference on High Energy 
Physics an explicit formula for a ‘scattering ampli-
tude’ describing the interaction of strongly interact-
ing subnuclear particles, such as pions.⁽¹⁾ His for- 
mula was simply expressed in terms of the Beta 
function introduced by Euler in the 18th century, 
whose properties are set out in the standard text 
books on the methods of mathematical physics.

Veneziano’s proposal resolved a controversy 
about how the description of a scattering amplitude 
in terms of resonances, as a sum of poles in the en- 
ergy variable, s, could be reconciled with the high- 
energy description of the amplitude, as an asymp-
totic series of terms which are powers of s, with 
exponents dependent on the angle of scattering, 
called Regge pole contributions. Some physicists had 
argued that the resonance terms should be added  
to the Regge pole contributions, so that there could 
be interference between these features of the ampli- 
tude, but Veneziano’s amplitude showed that the sum 
over resonances and the asymptotic series of Regge 
pole contributions could be alternative, equivalent 
descriptions of the amplitude. The resonance and 
Regge pole descriptions of the amplitude were said 
to be ‘dual’; the extensions and generalizations of  
the Veneziano amplitude that were made by many 
theoretical physicists over the next few years were 
called dual models. Dual models proved to be the 
embryo (or perhaps, it would be more apposite to 
say, the larval form) of what emerged within a few 
years to become string theory.

In the summer of 1968, I was a research stu- 
dent in Cambridge, working on other aspects of 
strong interaction scattering amplitudes and hearing 
gossip from my friends amongst the pure math

ematicians of exciting developments in a very 
different area, namely, finite group theory. John 
Conway had become intrigued with the Leech lat- 
tice, a lattice of points in 24-dimensional Euclidean 
space describing an extremely close packing of 
(hyper-)spheres, and its symmetries. He had calcu- 
lated precisely how many there were of these sym- 
metries, more than 8.3 × 10¹⁸. With any lattice  
there is always the obvious symmetry of reflection 
through the origin and identifying symmetries that 
differ by such a reflection gives a group of half the 
size, now known as the Conway group, C0₁.

Conway quickly showed that his group, C0₁,  
is simple, and so as near as one can get to a basic 
building block of finite group theory. It is now 
known that the finite simple groups come in 18 
infinite series and 26 exceptional sporadic cases. 
Conway’s group, C0₁, turned out to be the fifth 
largest of the sporadic simple groups, the largest  
one that had been discovered at that time. Further-
more, other new simple groups were found inside  
it and it provided a crucial step towards the overall 
classification of finite simple groups, which took 
over 150 years to complete. As you may know, the 
number 26 also plays a particular role in string 
theory, as a special dimension of space-time. Our 
story is full of coincidences that turn out to be clues 
of much deeper and unexpected connections, but 
the occurrence of 26 in these two places really is a 
coincidence (I suppose!); the 24-dimensionality  
of the Leech lattice is quite another matter.

Having moved to cern, Geneva, in 1970, as  
a postdoctoral fellow, I became engaged in the de- 
velopment of the theory of dual models. Veneziano’s 
original formula, proposed for processes involving 
the scattering of two particles, had been generalized 
to processes involving any number of particles. Ini- 
tially, it might have been regarded as an interesting 
example, resolving the controversy over whether  

to add resonance pole contributions to Regge 
contributions. However, it became apparent that, 
more ambitiously, it might be considered as the 
starting point (or ‘Born term’) for a perturbative 
series expansion for the scattering amplitude in a 
fundamental theory of the strong interactions, rather 
than just a provisional phenomenological descrip-
tion. For this purpose, in addition to generalizations 
to the scattering of arbitrary number of particles,  
we also need higher order, or loop, contributions  
to ensure consistency with unitarity, i.e. conserva-
tion of probability.

Some clear obstacles were present to devel
oping dual models into a consistent fundamental 
theory. In particular, quantum theories consistent 
with special relativity are likely to generate negative 
answers for some of the quantum mechanical prob- 
abilities specifying the results of scattering processes, 
that thus would make no sense. These negative 
probabilities are associated with certain potential 
states of the system, known as ghost states. To have a 
satisfactory interpretation, such a theory needs to 
have a consistent way of excluding ghosts states;  
that is, we should be able to define a subspace of the 
potential states of the theory, which would be re- 
garded as the physical states, free of ghost states 
producing negative probabilities, and generating 
only other physical states, and no ghosts, on 
scattering.

Typically, the space of physical states is 
characterized by the vanishing of a set of (linear) 
conditions, and the consistency of these conditions 
with scattering amounts to a symmetry of the theory. 
In quantum electrodynamics (qed), it is gauge sym- 
metry that plays this role in eliminating the ghosts. 
In the theory of dual models, there are, in a sense, 
infinitely more ghost states than in qed, and, in re- 
sponse, an infinite-dimensional symmetry is needed 
to eliminate them. Early on, it was realized that the 
fundamental constituents scattering in dual models 
were more analogous in some sense to a sort of vi- 
brating medium, a ‘rubber band’ or a ‘string’, rather 
than to conventional particles, and there are ghost 
modes associated with each of the infinitely many 
vibrational modes of the string.

Towards the end of 1969, at the cost of an 
assumption that necessitated massless spin 1 par- 
ticles (like the photon), Miguel Virasoro identified 
an infinite-dimensional symmetry, which had the 
potential to eliminate the ghost states. The algebra 
generating this symmetry, with the central term 

essential in the string theory context, is now  
named the Virasoro algebra.⁽³⁾ The proposition that 
Virasoro’s conditions did indeed eliminate the ghost 
states was then a mathematically precise conjec- 
ture that could be formulated just in terms of the 
Virasoro algebra: it was the requirement that a 
certain space defined by the algebra was positive 
semi-definite. With the efforts of several theoretical 
physicists⁽⁴⁾, within two and a half years, the result, 
known as the No-Ghost Theorem, was proved.

A second severe challenge in the development 
of the theory of dual models was the consistent 
construction of loop contributions. Typically, there 
are divergences in loops that have to be removed by 
renormalization (unless, in very special theories, 
they cancel as the result of supersymmetry). In 
certain dual model loops, a new problem arose: an 
unwanted singularity, a branch cut in an energy 
variable, which would violate the axiom of unitarity 
unless it could be transformed into a pole, in which 
case it would signal a new particle in the theory.  
Late in 1970, Claud Lovelace, desperate to make  
the theory consistent, considered varying the dimen- 
sion of space-time, away from the familiar four, and 
even fantasized about varying the number of sets  
of Virasoro-like conditions. Relaxing reality in this 
way, he found that the dual model would be saved if 
the dimension, D, of space-time were 26 (25 space 
and one time) and the Virasoro conditions were 
doubled in number.

At the time, to many physicists, Lovelace’s 
speculations seemed at best irrelevant, even a joke, 
because considering extra dimensions to space-time 
was viewed as just science fiction. But his Delphic 
observation was rehabilitated, if not totally ex-
plained, by the proof of the No-Ghost Theorem, 
because it showed that ghosts were absent if and 
only if D is no greater than 26, and that, when  
D = 26, the Virasoro conditions indeed do effec- 
tively behave as though they were two sets of con- 
ditions rather than one (mimicking what happens in 
qed). Thus, Lovelace’s consistency requirements are 
precisely met, as if by miraculous coincidence. But 
these results encourage another, geometrical inter- 
pretation. A string moving in four-dimensional 
space-time can vibrate in two dimensions trans-
versely and one longitudinally; a string moving in 
D-dimensional space-time can vibrate in D – 2 
transverse dimensions and one longitudinal dimen- 
sion. When D = 26, the extra effectiveness of the 
Virasoro conditions removes the longitudinal 
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Emerging and interweaving connections between finite group theory, infinite-dimensional 
symmetries, and string theory are related from a personal perspective, illustrating the symbi-
otic relationship between mathematics and theoretical physics.
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oscillations and the only significant vibrations are 
those in the D – 2 = 24 transverse dimensions. And, 
over the next two decades, it would emerge that the 
occurrences of the special dimension 24 in finite 
group theory and as the number of transverse di- 
mensions in what was becoming string theory are 
essentially related.

In retrospect, that the longitudinal oscillations 
of the string should be absent when the passage to 
quantum theory leaves the symmetries of theory 
intact, when the theory is free from anomalies, is 
clear from the description of the mechanics of the 
string originally proposed by Nambu and Goto.⁽⁶⁾ In 
their action principle, longitudinal motions of the 
string have no dynamical significance; they are only 
reparametrizations. When D ≠ 26, the passage to 
quantum theory is corrupted by anomalies, and 
longitudinal modes, which seem impossible to treat 
consistently, are introduced by quantization. This 
motivated an understanding⁽⁷⁾ of how the quantum 
mechanics of a relativistic string would lead to the 
spectrum of states found in the dual model, pro- 
vided that D = 26, and to a precise relationship 
between the geometrical string picture and the 
calculational framework of dual models. Gradually  
it came to be accepted that string theory required 
more than the familiar four dimensions of space-
time, a total of 26 for the original string theory or  
10 for the more elaborate and realistic superstring 
theory, and these extra dimensions should be curled 
up on a scale of 10¯³⁵m, with the theory being inter- 
preted as a unified theory of all the fundamental 
interactions, rather than one describing strong 
interaction physics on the scale of the nucleus, its 
original context.

While the attention of theoretical physicists 
shifted away from string theory, from the mid 1970s 
to the mid 1980s, there were a number of significant 
developments in mathematics which were or would 
become intimately related to string theory. In 1981, 
Robert Griess announced the construction of the 
largest sporadic simple group, usually known as  
the Monster group, M. It has about 8.1 × 10⁵³ el- 
ements, more than 36 orders of magnitude bigger 
than Conway’s group. As well as being the biggest,  
it contains all but 6 of the other sporadic simple 
groups within it in some sense. Just as C0₁ is the 
group of symmetries of the 24-dimensional Leech  
lattice, up to reflections, so it is natural to seek to an 
object, albeit an abstract one, of which M is the 
group of symmetries. This is challenging not least 

because the dimension of the smallest space, in 
which M can be thought of acting as rotations, is not 
24 but 196,883. 

In 1974, even before the Monster had been 
constructed, while the evidence for its existence, 
although extremely strong, remained circumstantial, 
John McKay spotted that this dimension differed by 
one from the coefficient 196,884 in the expansion of 
the elliptic modular function j(τ), a function of 
central importance in complex variable theory, an 
apparently very different branch of mathematics. He 
sent his observation to John Thompson, then visiting 
Princeton from Cambridge, who generalized it to 
observe that the next four coefficients of j(τ) could 
also be expressed as simple sums of a few of the 
dimensions of spaces in which the putative Monster 
group might be represented as acting as rotations. 
Since both the coefficients of j(τ) and the dimension 
of these representation spaces get big rather quickly, 
this would be an extreme coincidence, unless there 
was a deeper reason. He conjectured that this would 
be true for all the coefficients of j(τ), and that this 
phenomenon reflected the existence of an infinite-
dimensional space, sliced or graded into finite-di- 
mensional layers, in which M could be represented 
naturally acting on each layer. Conway together with 
Simon Norton, another Cambridge group theorist, 
generalized Thompson’s work to conjecture a modu- 
lar function, and a series connected with the hypo- 
thetical natural infinite-dimensional representation 
space, for each of the elements 8.1 × 10⁵³ elements  
of the Monster, conjectures which they called 
Monstrous Moonshine.⁽⁸⁾

This posed the challenge of finding the natural 
infinite-dimensional representation space, later 
denoted V♮, and a structure within it of which M 
was the symmetries, so ‘explaining’ the existence of 
M in the same way that the Leech lattice ‘explains’ 
the existence of C0₁, with the important historical 
difference that, whereas the Leech lattice led to the 
discovery of Conway’s group, it would be the Mon- 
ster group that was leading to the discovery of V♮ 
and whatever lived inside. The construction of V♮ 
and the structure inside it which could be regarded 
as providing the raison d’être for the Monster, as its 
symmetry group, brings together concepts from 
string theory and another new development from 
the late 1960s: the infinite-dimensional algebras 
introduced independently by Victor Kac and Robert 
Moody⁽⁹⁾. These Kac-Moody algebras generalized 
the compact Lie algebras, such as those associated 

with the group of rotations in a Euclidean space,  
and some of the beautiful and important results 
from the theory of such algebras generalize to Kac- 
Moody algebras. 

It was realized about 1980 that the basic ways 
of constructing or representing Kac-Moody algebras 
involve the same mathematical objects that describe 
the interaction of strings, called vertex operators. 
This established a two-way flow of information, 
enabling physicists, in particular, to understand  
that Kac-Moody algebras played a role in physical 
theories and could be used to provide new ways of 
realizing gauge symmetries.⁽¹⁰⁾ In string theory, 
vertex operators are part of what is called a confor-
mal field theory which describes the structure of  
the string. Igor Frenkel, James Lepowsky and Arne 
Meurman⁽¹¹⁾ found the natural setting for the 
Monster group by constructing a special conformal 
field theory, called a vertex operator algebra in this 
context, acting in V♮. Their conformal field theory 
was special amongst conformal field theories in 
much the same way that the Leech lattice is special 
amongst 24-dimensional lattice. They showed that 
the group of symmetries of this vertex operator 
algebra was indeed M, and in this way proved the 
conjectures of Thompson.

To go further and prove the Moonshine con- 
jectures of Conway and Norton, Richard Borcherds, 
originally a student of Conway, defined the notion  
of a Generalized Kac-Moody algebra. He enlarged 
V♮, so that it became something like the transverse 
vibration states of a string and defined a Generalized 
Kac-Moody algebra associated with the space de- 
fined by Virasoro-like physical state conditions 
imposed in this larger space. In a denouement which 
brings together the strands of our plot, by applying  
a generalized form of the Weyl character formula,  
a central result from the theory of compact Lie al- 
gebras which extends to Generalized Kac-Moody 
algebras, and using the No-Ghost theorem of string 
theory, Borcherds was able to prove the Moonshine 
conjectures.⁽¹²⁾ For this tour de force, he was award- 
ed a Fields medal in 1998.⁽¹³⁾

In this story, extending over thirty years, I  
have tried to outline briefly how three seemingly 
disparate theories or themes, which began about 
1968—string theory, Kac-Moody algebras, and the 
developments in finite group theory following from 
the discovery of Conway’s group, C0₁—became in- 
tertwined and cross-fertilized, revealing profound 
connections between previously unrelated areas  

of research. Vertex operator constructions from 
string theory were rediscovered or imported into  
the theory of Kac-Moody algebras, and then used to 
provide a natural setting for the Monster group, and 
a framework within which the Moonshine conjec-
tures could be proved using the No-Ghost theorem 
from string theory; and ideas from Kac-Moody 
algebras were imported back into string theory to 
provide new methods of realizing gauge symmetry 
there.

The story provides a fine illustration of the 
symbiotic relationship between mathematics and 
theoretical physics. Its plot could not have been 
guessed in advance; it is more wonderful than any- 
one could have imagined. Few of the chapters could 
have been written as predetermined deliverables on 
multi-year research programs. Lovelace’s suggestion 
of a 26-dimensional space-time and Thompson’s 
conjecture of a detailed relationship between the 
elliptic modular functions and representations of  
the Monster group led others to doubt their reason. 
And, of course, the story is not yet over. Physicists 
Tohru Eguchi, Hirosi Ooguri, and Yuji Tachikawa 
have found a new form of ‘Moonshine’ relating the 
representations of the Mathieu sporadic simple 
group, M₂₄, to a weak Jacobi form, the elliptic genus 
associated to a K3 surface.⁽¹⁴⁾ To what new ques-
tions, connections and concepts this will lead, we 
have yet to imagine… ■

I am grateful to Richard Borcherds, Matthias Gaberdiel and  
Siobhan Roberts for helpful comments on a draft of this text.
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A Deeper Union? Poincaré on  
Mathematics and Mathematical Physics

T his topic invites the historian to speculate:  
are mathematics and mathematical physics two 
subjects, or two aspects of the same subject? 

Even if we grant that in the modern world both 
subjects have become so large that no-one can be 
expected to know all of even one of them, we find 
surprises such as string theory, with a strong claim 
to being fundamental in both physics and topology.

If we set aside disciplinary issues, is there a 
single domain containing both mathematics and 
mathematical physics, or are there two domains with 
perhaps some bridges between them? The view that 
there are two domains was implied as long ago as 
Greek times. Archimedes in his Method regarded 
some arguments drawn from considerations that 
would be convincing in physics as having only a 
heuristic character when used in a strictly math-
ematical setting. In other words, there might be 
arguments in mathematical physics that draw their 
certainty from an understanding of physics that has 
not been captured in precise mathematical terms. 
On this view, the world displays a limited range  
of possibilities, which it presents for reasons that 
may not be understood. 19th century arguments in 
potential theory had a similar character. Mathemati-
cal physicists such as Helmholtz and Maxwell could 
not see the point of the cumbersome and restricted 
proofs offered by Dirichlet, Riemann, and Schwarz.

Henri Poincaré reflected at length on these 
issues. He argued that more-or-less intuitive proofs 
of theorems in potential theory that are based on  
an appeal to Dirichlet’s principle are without value 
for the mathematician, although they are of the right 
sort to satisfy a physicist because they leave the me- 
chanism of the phenomena apparent. On the other 
hand, the rigorous proofs he knew, including his 
own, he regarded as wrong in kind, because they  
do not mimic the physical process. Moreover, they 
depended on convergence arguments that were 

usually too slow, and the approximations involved 
too complicated for such approaches to yield ef- 
fective numerical procedures (see Poincaré 1890).

Poincaré did not regard the lack of rigour in 
mathematical physics as acceptable. He could see no 
clear place to draw the line between mathematics 
and mathematical physics, no way to be sure that a 
less than rigorous proof was not in fact misleading, 
and argued that in any case a rigorous proof teaches 
something. As we have just seen, the more important 
distinction for him was between ‘right’ and ‘wrong’ 
proofs—proofs that capture the essence of the 
problem and those that do not.

For Poincaré, the problem was always: How  
to proceed? Isolated facts had no appeal for him,  
he said, but a class of facts held together by analogy 
was valuable because it brings us into the presence  
of a law. He openly echoed Ernst Mach in his 1908 
address to the International Congress of Mathemati-
cians in Rome when remarking that “The impor-
tance of a fact is measured by the return it gives—
that is, by the amount of thought it enables us to 
economise”. The elegance of a good proof reflects an 
underlying harmony that in turn introduces order 
and unity and “enables us to obtain a clear compre-
hension of the whole as well as its parts. But that is 
also precisely what causes it to give a large return”. 
The aesthetic response to mathematics was chiefly 
appreciated by Poincaré as a sign of its efficacy—he 
set less store by unconscious feelings of certainty 
which could, he admitted, prove on rational analysis 
to be worthless.

In downplaying the importance of isolated 
facts, Poincaré was seeking to diminish the inexpert 
view of physics, or any science, that it serves up 
strange things we would never have known other- 
wise. Indeed, there are many strange—and many 
familiar—facts about the physical world that to this 
day lack good mathematical explanations. His point 
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was that, as a leading expert in mathematical phys- 
ics, with a particular interest in the theories of 
magnetism, electricity, and optics, the only way to 
work was theoretically. And for Poincaré, a theo
retical understanding was a mathematical one.

In one crucial respect, he argued, a fact had 
travelled the opposite way, from mathematical 
physics to mathematics. This, he said, was the gift  
of the continuum, the structure being defined in  
his lifetime as the real numbers, but upon which  
the calculus had been based for at least a century. 
Poincaré knew that there were other mathematical 
continua, but the one we believe to be appropriate 
for mathematical physics was responsible, in his 
view, for all of mathematics except some algebra 
(group theory and combinatorics).

What had flowed from mathematics to math- 
ematical physics was language. As he put it, “Math- 
ematics is the only language the physicist speaks.” 
Poincaré was entirely familiar with the passage from 
theoretical to experimental physics and back, but  
his touch was less sure. What he knew about in 
physics, what he sought to increase our understand-
ing of, was mathematical physics, in which the ob- 
jects under discussion should have good definitions 
and be treated according to agreed mathematical 
rules. The best definitions, the deepest insights, 
would be those that made the theories work most 
smoothly and produce new discoveries most ef- 
fectively.

The rules were not exclusively mathematical. 
He attached particular significance to Newton’s  
laws of motion, the conservation of energy, and the 
principle of least action. In his view, these rules  
had passed beyond the stage where they were to be 
disputed. He gave the example of a satellite in orbit 
round a planet and which displayed behaviour 
inconsistent with Newtonian gravity. We would not, 
he said, any longer try out alternatives to the inverse 
square law. We would instead look for other forces 
acting on the satellite that were distorting its orbit. 
Certain results, formerly a matter of empirical test- 
ing and discussion, had been elevated to the status  
of axioms in the relevant theory. They could not  
be contested within the theory.

Nonetheless, they were what he called con- 
ventions. They were not laws of nature or absolute 
truths (in his opinion we have no access to such 
things), but had been raised to the status of incon- 
testable truths within a theory because they had 
achieved a high degree of empirical confirmation 

and because they played a central role in an effec- 
tive theory.

Theories could change. Poincaré did wonder  
if the mathematical physics he knew, which he called 
the physics of principles, was not indeed coming to 
an end, and would have to be replaced by a more 
probabilistic form of physics if and when thermody-
namics was better understood. He knew very well 
that the branch of physics he knew best and upon 
which he worked most extensively, was in trouble in 
the early years of the 20th century. Hertz’s theory of 
magnetism, electricity, and optics could not account 
for Fizeau’s experiments on the speed of light in 
water; its only rival, Lorentz’s, could only do so by 
abandoning Newton’s third law (to every action 
there is an equal and opposite reaction).

Lorentz was not much bothered by this prob- 
lem. He was exploring the novel idea that all matter 
might be electro-magnetic in nature. Were that to be 
true, might it not be that a law about the behaviour 
of matter would have to be rewritten when matter 
was no longer a fundamental concept? But Poincaré 
found this approach unsatisfactory. To him it was  
ad hoc, a hypothesis invented to get people out of a 
difficulty, but one that did not meet the criteria of 
leading to new discoveries.

He felt the same way about the hypothesis of 
the supposed Lorentz contraction as Lorentz had 
proposed it. To Poincaré, this was as if nature was 
giving one a nudge in the ribs (a “coup de pouce”)—
something it never otherwise did. He preferred to 
reformulate Lorentz’s idea of local time and make it 
part of a theory of space and time in which measure-
ments in different moving frames of reference were 
handled by the transformations of what we now call 
the Lorentz group, and which Poincaré described 
shortly before Einstein presented his theory of spe- 
cial relativity.

This is not the place to analyse why, having 
done so much, Poincaré in the end chose to keep to 
a separation of space and time and not move over to 
space-time, or, if you prefer, to keep to the Galilean 
group and not switch to the Lorentz group. Famous-
ly, he and Einstein did not understand what each 
other had done, and Poincaré was technically right: 
one can do everything Einstein described in the 
special theory with the Galilean group and different 
behaviours of rods and clocks.⁽¹⁾

That there was a choice to make, that it is made 
on grounds of efficacy or convenience, as Poincaré 
sometimes put it, that we do not so much discover 

the laws of nature as propose theories—those are  
the lessons to take from Poincaré’s philosophising. 
Two generations later, the physicist Eugene Wigner 
speculated on the unreasonable effectiveness of 
mathematics in physics. Poincaré could not have 
found it unexpected at all. If mathematical physics  
is conducted in the language of mathematics, mat- 
ters could not be otherwise. We might raise the 
possibility that nature might be too unruly to admit 
detectable regularities at all, but that invites the reply 
that then there would be no sentient beings. Could 
other beings understand the universe with radically 
different mathematics to ours? Poincaré never ad- 
dressed that question directly. He did speculate on 
whether other minds could perceive the universe as 
non-Euclidean, and his answer was a straight-for-
ward yes. His message was that mathematics and 
mathematical physics are two aspects of the same 
enterprise. Each advances the other. And whether 
string theory succeeds or fails, there can be little 
doubt that the best physics of the 20th century was 
written in the language of 20th century mathematics, 
and one must suppose the new physics of the 21st 
century will follow the same pattern. ■
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A Physicist Involved in Purely Algebraic 
Research: The Case of H. B. G. Casimir

T he legacy of Paul Ehrenfest (1881–1933), an 
Austrian physicist, is kept at the Dutch Mu- 
seum Boerhaave in Leiden and is indeed a 

treasury of knowledge. Here one can gain insight 
into Ehrenfest’s scientific motivations and problems, 
learn about his personal opinions on more general 
(scientific) issues, about the research communities 
and the research processes he was involved in during 
the first third of the 20th century. This treasure trove 
also contains letters to Ehrenfest written by the 
Dutch theoretical physicist Hendrik Brugt Gerhard 
Casimir (1909–2000). Casimir was one of Ehren-
fest’s students who kept Ehrenfest informed about 
his subsequent scientific activities. In these letters 
one can gain insight into the development of the first 
purely algebraic proof of the complete reducibility of 
finite-dimensional representations of semi-simple 
Lie-groups (see⁽¹⁾, especially chapter 16). This proof 
was published in a joint paper by Casimir and the 
mathematician Bartel Leendert van der Waerden 
(1903–1996) in 1935⁽²⁾.

In 1926 Casimir started studying physics, 
mathematics and astronomy at Leiden university, 
where Ehrenfest had been teaching since 1912. The 
bright young student was just in his third semester 
when he was allowed to participate in Ehrenfest’s 
research colloquium. After passing the “Doctoraal-
examen” in June 1928, Casimir turned to theoretical 
physics: relativity theory and quantum mechanics.

Casimir and van der Waerden probably met  
in Leiden in 1928/29 during a series of guest lectures 
organized by Ehrenfest around group theoretical 
methods in quantum mechanics. At that time a 
number of articles on the topic by diverse authors  
as well as the first monograph by the mathematician 
Hermann Weyl had appeared⁽³⁾. Like most physi-
cists, Ehrenfest was unfamiliar with the mathemati-
cal theory, i.e. representation theory of groups. The 
term “group plague” (Gruppenpest) was coined  

and some physicists, e.g. John Clarke Slater⁽⁴⁾, tried 
to find ways to avoid it. But Ehrenfest was keen to 
learn about it. He invited leading experts (Wolfgang 
Pauli, Eugene Paul Wigner, Walter Heitler) as well  
as the mathematician van der Waerden to Leiden to 
clarify matters. Casimir who was present during 
these guest lectures considered van der Waerden’s 
lecture to be brilliant.

Van der Waerden knew Ehrenfest from his 
student days. In fact, van der Waerden’s first publi- 
cation ever was a popular science account of a lec- 
ture on relativity theory given by Ehrenfest at an 
institute for workers’ education⁽⁵⁾. When van der 
Waerden became professor at Groningen in October 
1928, Ehrenfest frequently wrote him, asking him 
questions on group theory, especially on certain 
sections of Weyl’s monograph dealing with represen-
tations of the rotation group. It was Ehrenfest who 
urged van der Waerden to develop a calculus which 
should be analogous to the tensor calculus in special 
relativity⁽⁶⁾. With the help of this calculus, named 
spinor-calculus upon Ehrenfest’s instigation, the 
relativistic wave equation of the electron could be 
handled more easily and conveniently.

In his Ph.D. thesis, completed in November 
1931, Casimir gave an elegant mathematical deduc- 
tion of the quantum mechanical equations of motion 
of the spinning top and sketched how the formalism 
could be applied to describe the (external) rotation 
of molecules⁽⁷⁾. In this context, he constructed an 
operator which commuted with any representation 
of a semi-simple Lie-group⁽⁸⁾—the Casimir-operator 
was born.

In September 1931 Casimir became assistant  
to Pauli at the eth Zurich. Pauli was one of the first 
to use group theory in quantum mechanics in his 
attempt to describe the spin of an electron as an 
intrinsic two-valuedness of the wave function of an 
electron. During his time as assistant in Hamburg, 
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probably in the winter term 1926/27, Pauli attend- 
ed a series of lectures by Emil Artin on hypercom-
plex systems (algebras). According to Pauli, Artin 
started the lecture with a remark on continuous 
groups, i.e. Lie-groups. Artin could not discuss them 
because no algebraic proof existed for the complete 
reducibility of the representations of semi-simple 
continuous groups. The only proof known was one 
presented by Weyl in 1925/26. Although Weyl’s 
proof was an important break-through, it unfortu-
nately used integrals and analytic means, instead of 
algebraic ones. When describing to Ehrenfest how 
unsatisfied mathematicians, including Weyl himself, 
were with Weyl’s proof, Casimir quoted Pauli as 
having said: “The mathematicians wandered around 
in tears.”⁽⁹⁾

When Casimir started working in Zurich,  
Pauli set him the task of proving the full reducibility 
theorem for semi-simple Lie-groups with algebraic 
means only. This was a purely mathematical prob- 
lem. Within one year Casimir had solved the 
problem for the group of 3-dimensional rotations 

with the help of the Casimir-operator, but was 
unable to generalize his proof to arbitrary semi-
simple Lie-groups. However, in November 1932, 
Casimir informed Ehrenfest that a solution had been 
found. Casimir had written to van der Waerden, 
who was professor in Leipzig at the time. Van der 
Waerden had succeeded in proving complete re- 
ducibility for arbitrary semi-simple Lie-groups along 
the lines of Casimir’s proof for the rotation group. 
Van der Waerden was not satisfied because his proof 
was based on a study of three cases. Only one of the 
cases could be solved quickly with the help of the 
Casimir-operator⁽²⁾. The delay in the publication of 
the proof could have been due to van der Waerden’s 
attempt to improve the proof. Casimir was rather 
proud that van der Waerden could not do without 
his operator:

“V. d. Waerden is now trying to simplify the 
thing; he would like to avoid the quadratic form. To 
tell you the truth, I have hopes that this won’t work.

Of course I am aware that it was more luck 
than intellectual power that everything turned  

out that way, but I am very happy about it never- 
theless. And Pauli was absolutely delighted:  
He had always said that it could not be anything 
profound.”⁽⁹⁾

The development of the Casimir-operator is 
not only an example of a two-way transfer of knowl- 
edge and techniques between mathematics and 
physics, but also represents a methodological shift  
in the status of group theory: at first physicists had 
made group theory and quantum mechanics com- 
patible and used group theory mainly as a tool, but 
then group theory itself became an object of their 
research in the field of mathematics. In my opinion, 
what was vital for this transition from being a tool to 
becoming an object of research was the network of 
scientists which evolved around group theoretical 
methods in quantum mechanics. Since group theory 
was new to the physicists, it needed to be explored 
by them. Some physicists turned to mathematicians: 
Pauli went to Artin’s lectures, Wigner asked John 
von Neumann for help, Ehrenfest invited mathema-
ticians to give lectures. Casimir wrote to Weyl and  

van der Waerden. On the one hand, some of the 
mathematicians, like von Neumann and van der 
Waerden, were open to the physical theory and  
to its special problems. Others like Weyl became 
even deeper involved in quantum mechanics.  
On the other hand, physicists, like Pauli, Casimir, 
Wigner and Guilio Racah, took up mathematical 
questions and problems. Thus for them group theory 
also became an object of research—not of physics, 
but of mathematics, of algebra. Casimir’s applica- 
tion of the Casimir-operator to the problem of 
complete reducibility, however, stands out as an 
example of research done by a physicist who was  
not motivated by problems of physics, but of pure 
mathematics. ■
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Changing Views―Images and Figures  
of Thought in the Mathematical Sciences
by Joachim Schwermer

— Part I —
Patterns of scientific discovery. Some sixty years  
ago thinking about science meant contemplating 
scientific knowledge. In the case of the mathemati- 
cal sciences this scholarly work tended to be done 
from the technical point of view of the history of 
ideas. This view has changed considerably. To make  
sense of science, one has to think about both sci- 
entific knowledge and the practice with which  
it engages.

Scientific thought and work is not a single 
process but a complex pattern of activities aimed 
towards certain ends. There has been a strong ten- 
dency to view scientific discoveries as the outcomes 
of sudden insights. However, this view of scientific 
creativity has turned out to be too simple to grasp 
the many facets and complexity of the scientific 
enterprise. To some extent this is the inevitable 
result of the more detailed attention to case studies 
in the history of sciences. By an analysis of the 
investigative pathways of a thought process over 
extended periods of time, one can see the multitude 
of themes, the gradual growth of certain points of 
view, repeated encounters with certain structural 
ideas, their development, their rejection involved  
in the scientific process.

It has become ever more widely recognized 
that scientific creativity might be viewed as a process 
of growth. As a step towards the eventual construc-
tion of a “theory of creative thinking“ the psycholo-
gist Howard E. Gruber called for an “evolving sys- 
tems approach” in the study of scientific creativity, 
i.e. a “conceptualization of scientific thought as 
protracted, purposeful, constructive work”.⁽¹⁾  
Gruber wrote:

“Issues to be dealt with include: intentionality, 
the relations between emotions and thought, sci- 
entific thinking as a series of structural transforma-
tions, metaphoric thought as part of the process  
of abstraction, differential uptake of complex idea- 

tional structures, and the place of insight in an 
evolving structure of ideas.”⁽²⁾ 

Gruber certainly puts forth a perspective that 
stands in stark contrast to the single “moment” of 
discovery.

Images and figures of thought as part of the process  
of abstraction. One of the patterns that play an 
important role in this intellectual process is the 
structure of analogies upon which a scientist may 
have drawn in his or her system of thought. To 
explore the ongoing mechanisms of innovation and 
to shed light on the edges of conception it is nec- 
essary to reflect on the ways in which “Gedanken-
bilder”, i.e. figures of thought, metaphors and  
images function in the scientific work. Figures of 
thought are particularly interesting because they  
are characterized by both a specific certainty in 
capturing the invisible hidden behind the appear-
ances and an intuitive uncertainty (or vagueness)  
to open further explanation. It is the aim of this 
short note to follow the interplay of thought and 
image in the mathematical sciences by examining 
certain cases.

Perception of reality, or, what is an image? This is an  
apparently simple question, and some people might 
have an easy answer but I do not. We live in a culture 
where images are produced at a rate that is nothing 
short of bewildering, where photographs, films, 
advertisements, computer pictures are churned out 
so quickly that our heads start to spin. In addition, 
we have the treasures of art, the contemporary works 
of artists on one hand, and we have the scientific 
images, simple drawings in mathematics or the 
physical sciences, we have images generated out of 
large sets of data gained by scanning tunnelling 
microscope or representing events in high energy 
physics. We are in the middle of a still unfolding 
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debate⁽³⁾ which focuses on the role of images in  
art and sciences, focuses on the ways in which 
images help to shape our perception of reality. At  
the same time, there is the urgent need to have 
precise distinctions in dealing with images in dif- 
ferent contexts—historical, cultural, psychological, 
philosophical, aesthetical. What is the relation 
between “picturing science” and “producing art”, 
what are the differences?⁽⁴⁾ Moreover, we have to 
explore an old distrust of images, questioning both 
the truth of imagination and means of represen
tation.

Visual perception—its ambiguity. In his book “Art  
and Visual Perception”⁽⁵⁾ Rudolf Arnheim discus- 
sed some of the virtues of vision. In particular, he 
described how the foundations of our present 
knowledge of visual perception are rooted in the 
studies of the Gestalt psychology. Vision is more 
than a mechanical recording of elements. It is a 
creative grasp of significant patterns in reality. The 
simple act of looking at a given object is character-
ized by a complex interaction between properties 
supplied by the object and the intellectual perception 
of the object. Over the centuries, artists, scientists 
and each of us have struggled to explore the nature 
of this relationship of tension and to come up with 
some satisfying visual concepts to represent objects.

To be more explicit: the elementary task  
of depicting on a two-dimensional plane a three- 
dimensional object is a difficult one. Just try to 
represent a chair on a piece of paper. Different 
people will get different drawings.

The situation gets even more complicated or 
interesting if the notion of space is involved. One 
might discuss how distortions create space, how 
objects create space, one might trace back how vari- 
ous spatial constructions have developed over the 
generations and cultures, one might focus on the 
discovery of central perspective, of the “punta di 
fuga”. Central perspective is a product of visual im- 
agination, a key to solving the problem of spatial 
organization.

Räumliche Anschauung—spatial intuition. On the one 
hand, numerous examples make it evident that there 
is one decisive side of the endless intellectual strug- 
gle scientists have to face in their work: images 
deceive, they lead us to argue on ambiguous prem- 
ises. On the other hand, we need scientific images 
because only images as visual elements of thought 

can help us to develop the intuition needed in  
the process of conceptualization.⁽⁶⁾ This is not an 
accident. Our brains seem to be organized in such a 
way that they are extremely concerned with vision. 
We are highly capable of recognizing, understand-
ing, and making sense of the world that we see upon 
visual patterns. Therefore, spatial intuition, or spatial 
perception, (räumliche Anschauung, as one says in 
German) is an enormously powerful tool. Pattern 
recognition, the capacity to take in a large amount of 
information by an instantaneous visual action, is a 
fundamental virtue of the human mind. Images can 
capture a richness of relations within a given setting 
in a way that even accurate verbal description can 
never unfold. We have to acknowledge the dynamic 
and polysemic signifying power from images.

— Part II —
Visualization. Text books in geometry covering 
Euclidean geometry, passing through various stages 
of non-Euclidean geometry to Riemannian geometry 
provide a menagerie of drawings and images to en- 
rich our understanding of the geometrical objects  
we are interested in. Sketches or drawings, given in 
personal discussions or seminar talks, motivate the 
ideas for rigorous proofs of mathematical results. 
Even more, in a dynamic process, teaching math-
ematics at the blackboard intertwines writing and 
talking, symbols play the role of an object, diagrams 
are decisive components in the interplay of thinking 
and writing. In any case, the visualization of geo- 
metrical configurations, the figurative marking of 
analogies between different mathematical structures 
or fields, the change of the point of view, are used as 
a device to transmit mathematical knowledge and  
to inspire an intuitive understanding.

— Part III —
Spatial intuition in Minkowski’s work. A case study  
of one scientist, Hermann Minkowski, may help us  
to understand the role of visual thinking in the 
evolving structures of knowledge.

Minkowski presented his views and his theory 
of an absolute world (= Postulat der absoluten Welt) 
to a wider public on September 21, 1908, when he 
delivered a lecture to the meeting of the Assembly  
of Natural Scientists and Physicians in Cologne,  

later published under the title “Raum und Zeit”  
in 1909.

An analysis of the content of this talk and other 
sources reveals substantial evidence that Minkows-
ki’s visual-geometric insight had a significant in- 
fluence on the formation of his concept of space  
and time. Basic geometric notions as symmetry, 
invariance, familiar to him as a mathematician, play 
key roles in his thinking on the confusing world of 
the electron theory at that time. Minkowski’s views 
of the nature of physical reality are directed by his 
capability of “Räumliche Anschauung”, i.e. his 
extraordinary spatial intuition. Beyond the separa-
tion of space and time, which is imposed on us by 
given experience, the postulate of relativity presents 
physical reality in its frame as a union of space  
and time.

Minkowski started his lecture with a quite  
radical statement:

“Gentlemen, the conceptions of space and  
time, which I would like to develop before you, arise 
from the soil of experimental physics. Therein lies 
their strength. Their direction is radical. From this 

hour on, space by itself and time by itself are to  
sink fully into the shadows and only a kind of union 
of the two should preserve their autonomy.

First of all I would like to indicate how, [start- 
ing] from mechanics at present, one could arrive 
through purely mathematical considerations at 
changed ideas about space and time”.⁽⁷⁾

An important point in Minkowki’s exposition 
was the following where he drew attention to the 
physical space encoded in three orthogonal coor- 
dinates and, simultaneously, an arbitrarily-directed 
temporal axis. He introduced the equation, given  
in terms of a quadratic form of signature (1, 3), 

c²t² – x² – y² – z² = 1 

where c was an unspecified weight assigned to  
the time coordinate. Suppressing two of the space 
axes in y and z, he derived his decisive space-time 
diagram.

This mathematical formulation resembled the 
approach Minkowski was familiar with in his studies 
in the arithmetic theory of quadratic forms. In his 
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“Probevorlesung” for his Habilitation in Bonn,  
given on March 15, 1887, Minkowski had successfully  
laid out his geometric approach to questions in the 
theory of quadratic forms. Following a suggestion  
of Carl Friedrich Gauss, made in 1840 and pursued 
by Gustav L. Dirichlet in 1848, Minkowski inter-
preted quadratic forms as lattices in space. This  
geometric point of view was already increasingly  
apparent in Minkowski’s early papers when he re- 
interpreted results obtained in an arithmetical mode 
as results about lattices in space. But now, as outlined 
in his Probevorlesung, the approach evolved into  
a direct treatment of the arithmetically defined 
objects [that is, the quadratic forms] in the geomet-
ric framework. This was quite a decisive step, a turn 
from arithmetic to geometry. At the same time, 
Minkowski introduced the concept of volume into 
his analysis. This simple idea led to a fundamental 
result, the so-called lattice point theorem. The 
method of investigation was definitely led by some 
kind of spatial intuition. This capability of visual-
geometric thinking is a unique aspect of Minkows-
ki’s approach to questions in number theory. It is 
steadily directed through geometric concepts and 
notions. In this way his “Geometry of Numbers” 
unfolded. It is viewed as one of Minkowski’s funda- 
mental contributions to mathematics. However, this 
visual thinking also forms one pillar in Minkowski’s 
later investigations in the theory of special relativity. 

— Part IV —
By examining the case of Minkowski, I indicated  
in some detail how images and visual thinking may 
function in the creative process in mathematics or 
physics. However, images form the core of art. By 
creating their own reality, images enable the scientist 
as well as the artist to capture the invisible and help 
to shape our perception of reality. In light of this 
connection I would like to conclude with some re- 
marks on similarities, dissimilarities between art and 
mathematics, remarks towards certain distinctions 
which have to be made in dealing with images in 
different contexts.

Sketches matter. Initial sketches to capture the idea  
of a prospective painting, drawings to bring out the 
formal organization of a composition, scattered 
configurations of lines to fix distortions of the pic- 
torial elements so that, e.g. the viewers eye is un- 

consciously directed towards a certain perception, 
all these elements constitute essential steps in the 
artistic creative work. But artists have the tendency 
to hide their sketches, they view them as their  
most private sources of inspiration. They view a 
sketch book as the battlefield where their artistic 
imagination has to find its formal expression, where 
compository or aesthetic demands have to match 
their artistic “Willen”, i.e. their conviction and desire. 
But this is the difficult pathway along which an 
artwork comes to fruition. 

On the other side, mathematics asks for a  
strict logical-analytical exposition of its results,  
a clear deduction of arguments in giving a proof.  
It is difficult to trace the true motivations, the idea 
behind an argument or a specific point of view, 
because the publication is convoluted with tech- 
nical details, condensed to the mathematical subject 
matter. But the mathematical practice is very dif- 
ferent. Mathematicians at work need sketches, they 
sketch an idea by drawing an image in a discussion 
with a colleague, they use this device, hopefully,  
in the classroom, sketches show up in talks to the 
scientific community. Sketches or images in mathe- 
matics capture patterns of thought, they can bring to 
light some underlying structures by suppressing the 
unimportant related to a specific question. But the 
way that sketches are used and how open they are to 
be perceived depends on the personal and social 
context. 

Rigorous concepts matter. A work of art can convey 
some of the essential mysteries of life, beyond the 
frames of ideas. It can unfold the depth of our feel- 
ings, it can make us rethink the truth of imagina- 
tion and the means of representation. At its best  
its meaning is open ended, it reveals mystery. In  
contrast, in its best form, a mathematical work 
represents an idea, and its value lies in the rigorous 
foundation of the inherent concepts. Revealing the 
precise nature of an object of our mathematical 
inquiry within a given framework, making clear the 
constraints of a given representation or description, 
capturing beyond the necessary verification the 
essence of a correspondence between objects in 
apparently different fields, these tasks mark the heart 
of mathematical work. The role of mathematics is  
to understand the mystery and communicate that 
understanding to others. ■
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Programmes

Research  
in Teams  
Programme

Thematic programmes are  
the main scientific activities 
taking place at the ESI. These 
programmes are extending over a 
longer period of time, including 
several workshop periods and 
research stays of individual 
scientists. There are usually four 
to six thematic programmes per 
year that have to be proposed 
about two years in advance and 
are chosen by the Scientific 
Advisory Board.

The Erwin Schrödinger Institute 
Research in Teams Programme is 
in place since the beginning of 
2012. It offers teams of two to 
four ESI scholars the opportunity 
to work at the Institute in Vienna 
for periods of one to four months, 
in order to concentrate on new 
collaborative research in math-
ematics and mathematical phys- 
ics. The interaction between the 
team members is a central com- 
ponent of this programme.

Thematic programmes in 2013:

Teichmüller Theory  
(organized by L. Funar, Y. Neretin,  
A. Papadopoulos, R. Penner),  
January 28–April 21, 2013

The Geometry of Topological D-Branes,  
Categories and Applications  
(organized by S. Gukov, A. Kapustin,  
L. Katzarkov and Y. Soibelman),  
April 22–July 6, 2013

Jets and Quantum Fields for LHC and Future Colliders 
(organized by A. H. Hoang and I.W. Stewart),  
July 1–July 31, 2013

Forcing, Large Cardinals and Descriptive Set Theory 
(organized by S. Friedman, M. Goldstern,  
A. Kechris and W. H. Woodin),  
September 2–October 25, 2013

Heights in Diophantine Geometry, Group Theory  
and Additive Combinatorics  
(organized by R. Tichy, J. Vaaler,  
M. Widmer and U. Zannier),  
October 21–December 20, 2013

Thematic Programmes in 2014:

Modern Trends in Topological Quantum Field Theory 
(organized by J. Fuchs, L. Katzarkov,  
N. Reshitikin and C. Schweigert),  
February 2–March 29, 2014

Combinatorics, Geometry and Physics  
(organized by A. Abdesselam, C. Krattenthaler,  
A. Tanasa, F. Vignes-Tourneret),  
June 2–July 31, 2014

Topological Phases and Quantum Matter  
(organized by N. Read, J. Yngvason,  
and M. Zirnbauer),  
August 4–September 12, 2014

Minimal Energy Point Sets, Lattices and Designs  
(organized by C. Bachoc, P. Grabner, E. Saff  
and A. Schürmann),  
September 29–November 22, 2014

Teams at the ESI in 2012:

Disordered Oscillator Systems
Bruno Nachtergaele (UC Davis),  
Robert Sims (U Arizona), Günter Stolz  
(U Alabama, Birmingham), 
June 18–August 5, 2012

Whittaker Periods of Automorphic Forms
Erez Lapid (Hebrew U),  
Zhengyu Mao (Rutgers U Newark), 
July 1–July 31, 2012

Twisted Conjugacy Classes in Discrete Groups
Alexander Fel’shtyn (Szczecin U),  
Evgenij Troitsky (Moscow State U), 
July 23–August 23, 2012

Resolution of Surface Singularities  
in Positive Characteristic
Dale Cutkosky (U Missouri),  
Herwig Hauser (U Vienna), Hiraku Kawanoue 
(Kyoto U), Stefan Perlega (U Vienna),  
Bernd Schober (U Regensburg), 
November 5–December 21, 2012

Teams at the ESI in 2013:

Degenerate Eisenstein Series for GL(n)
Marcela Hanzer (U Zagreb),  
Goran Muic (U Zagreb), 
January 7–Feburary 7, 2013

On the First-order Theories of Free Pro-p Groups,  
Group Extensions and Free Products of Groups
Montserrat Casals-Ruiz (U Oxford),  
Ilya Kazachkov (U Oxford), and Vladimir  
N. Remeslennikov (Russian Academy of Science), 
February 18–March 16, 2013

Non-Commutative Geometry and Spectral Invariants
Alan Carey (Australian National U),  
Harald Grosse (U Vienna), Jens Kaad (U Bonn), 
May 27–June 23, 2013

Nuclear Dimension and Coarse Geometry
Erik Guentner (U Hawaii), Jan Spakula  
(U Münster), Rufus Willett (U Hawaii),
May 27–June 23, 2013

Don Zagier,  
Collège de France, Paris, France 
and MPI Mathematik, Bonn, 
Germany
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I am a number theorist a little over halfway  
through a six month stay in Vienna, working at 
the esi as a Junior Research Fellow, and what 

follows are a few thoughts on my time here so far.
Despite being called an Institute for Math

ematical Physics, the esi has a diverse range of 
mathematical activities, and has certainly kept this 
particular number theorist stimulated and occupied 
with organised events—there have been number 
theoretic seminars and lecture courses running 
non-stop for over three months. All of these activ- 
ities have been conducted in a relaxed atmosphere, 
with all those in attendance happy to talk to a young 
researcher like myself. The Institute’s support for 
those of us just beginning our research careers is 
admirable.

The esi, occupying the top floor of a priests’ 
seminary, is a wonderfully tranquil place to sit and 
think—it is close to the centre of the city and easily 
accessible by public transport, yet feels peaceful and 
calm. It is too easy to spend all of one’s time at the 
Institute! Nothing gets in the way of doing math-
ematics. The staff at the esi, both academic and 
administrative, have been unfailingly friendly. The 
mathematicians, though busy, have always involved 
me in the local events and found time for a math-
ematical chat. I was invited to and took part in sev- 
eral of the seminars taking place at the University  
of Vienna.

One of the great benefits of a visit to the esi  
is the chance it provides to spend some time in the 
city of Vienna. Of course, I have been to Schön
brunn, seen ‘The Kiss’ and been to the opera—like 
all good tourists should—but I have been fortunate 
to be shown a few things not in the guide books.  
The friends I have made amongst the staff at the  
esi and students of the University have been kind 
enough to show me some of their own favourite 
places in Vienna—be they tucked-away restaurants, 
coffee houses or nightclubs. I am not even sure the 
six months of my stay will be long enough to sample 
all of the astonishing array of coffee houses. Apart 
from sating my worrying new addiction to coffee 
and cake, I have found them a pleasant setting for 
doing mathematics (though not as pleasant as the 
esi, of course!). Now, if I can only finish this tome  
of Musil whilst I am here…

Adam Joyce
Spring 2006

EMS IAMP Summer School on Quantum Chaos. From  
July 30 to August 3 2012 a Summer School on 
Quantum Chaos took place at the esi. Organized  
by Nalini Anantharaman, Stéphane Nonnenmacher, 
Zeév Rudnick and Steve Zelditch, it was the first  
one of a series of schools on various topics of math- 
ematical physics supported by the iamp and the  
ems. Young researchers from more than 10 different 
countries spent a week in Vienna to learn about the 
research field of “Quantum Chaos”.

This research field aims at understanding the 
dynamics of quantum (or wave) systems admitting  
a chaotic classical counterpart and is situated at the 
interface of mathematics and physics. As the sum- 
mer school was mainly adressed to graduate students 
and postdocs, the week started with several basic 
courses that introduced the subject and the basic 
methods and concepts. These introductory lectures 
were held from Monday to Wednesday and covered 
topics such as the elementary theory of dynamical 
systems, semiclassical analysis, and the theory  
of random matices, amongst others. The second  
part of the week was devoted to a series of more ad- 
vanced talks, presenting some recent work and  
new developments.

A special event of the summer school was  
the poster session on Tuesday evening, in which the 
participants presented their own research. Especially 
for younger researchers at the beginning of their  
academic career this served as a good opportunity  
to present and discuss their research interests and 
problems with experts of the field in an informal 
setting. The poster session turned out to be well- 
attended and very lively and it also showed the many 
different research interests and backgrounds that 
were represented at the summer school. ■

Junior Research  
Fellowship  
Programme

Summer  
Schools

From 2004 to 2010, the ESI  
Junior Research Fellowship Pro- 
gramme was in place. Its purpose 
was providing support for ad- 
vanced Ph.D. students and 
postdoctoral fellows to allow 
them to participate in the activ- 
ities of the ESI. Grants were given 
for periods between two and  
six months.

When the programme had to 
be terminated due to lack of 
funding in 2010, there had been 
more than 150 Junior Research 
Fellows at the ESI, coming from 
over 30 different countries.

Summer Schools are short 
programmes of one to two weeks 
that are aimed at young re-
searchers such as graduate 
students and postdocs. These 
schools usually consist of a 
series of basic introductory 
lectures in the beginning, 
complemented by some more 
advanced talks on ongoing 
research, and are organized  
by renown scientists in math-
ematics and mathematical 
physics.

Most of the ESI Junior 
Research Fellows, May 2006
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Gathering Evidence:  
My Time as a Senior Research Fellow

Senior Research  
Fellowship  
Programme

The origins of a colony (I). I was a Senior Research 
Fellow (srf) at the esi during the winter term of 
2011–2012. As part of my “duties’’ I gave a course on 
“L-functions and Functoriality’’. The principle of 
functoriality is one of the central tenets of the 
Langlands program; it is a purely automorphic 
avatar of Langlands vision of a non-abelian class 
field theory. There are two main approaches to 
functoriality. The one envisioned by Langlands is 
through the Arthur-Selberg trace formula, and with 
the recent work of Ngô, Arthur, and others this is 
now becoming available. The second method is that 
of L-functions as envisioned by Piatetski-Shapiro 
and is based on the converse theorem for GL(n).  
The overall purpose of the series of lectures was to 
develop and explain the L-function approach to 
functoriality. The course consisted of 12 lectures of 
90 minutes each together with the accompanying 
question periods of 45 minutes each. The first lec- 
ture covered the theory of modular forms and their 
L-functions, the classical GL(2) theory, as developed 
by Hecke in the 1930’s. The second lecture began the 
adelic theory of automorphic representations for 
GL(n), covering the basic definitions of cuspidal 
automorphic representations and their decomposi-
tion into local representations. Lectures 3 through 9 
were spent on the theory of L-functions for GL(n) 
and the twisted L-functions for GL(n)×GL(m). The 
tenth lecture was devoted to the Converse Theorem 
for GL(n). The eleventh lecture was devoted to de- 
scribing an arithmetic family of Euler products that 
are conjecturally nice, the Artin L-functions at- 
tached to an n-dimensional representation of a 
Galois group. In this lecture we surveyed the results 
of class field theory and then the contents of Artin’s 
three papers on his non-abelian L-functions from 
1923, 1930, and 1931. In the final lecture we applied  
the “moral theorem’’ coming from the Converse 
Theorem to the conjecturally “nice’’ L-functions of 

Artin to motivate the global and local Langlands 
correspondences, which roughly state that n-dimen-
sional local or global Galois representations should 
be locally or globally modular, i.e., attached to ap- 
propriate representations of GL(n) in such a way  
that preserves their L-functions. This is Langlands’ 
formulation of a “non-abelian class field theory’’.  
We discussed how one would formulate such a 
Langlands correspondence for groups G other than 
GL(n). Putting all this together, we formulated the 
Langlands Functoriality Conjecture as a process of 
transferring local and automorphic representations 
of G to GL(n) mediated by the local and global 
Langlands correspondences, that is, by L-functions. 
Finally we discussed how one would then use the 
Converse Theorem on GL(n) as a tool for establish-
ing cases of this Functoriality Conjecture.

In attendance I had 5–6 graduate students  
plus 2 faculty from the University of Vienna. The 
graduate students ranged from early career to fin- 
ishing. Besides the lectures, every week I gave out 
problem sets and a list of historical references for the 
week’s lectures. Even though the problem sessions 
were designed for student solutions of the exercis-
es—and some were indeed used for that purpose—
we also used them as open Q & A sessions where 
anyone could ask questions. If I asked, they were 
related to the exercises-detail questions. But when 
they asked, while there was the occasional detail 
question about lecture material, they were more 
often philosophical or historical or questions about 
relations with other ideas in the area or surrounding 
areas. For example, while the lectures were centered 
around integral representations of L-functions, the 
Q & A sessions prompted me to give an impromptu 
outline of the Langlands-Shahidi method, relating 
analytic properties of L-functions to Fourier coef- 
ficients of Eisenstein series. These impromptu 
expositions are equally challenging and ultimately 

James W. Cogdell was a 
student of Piatetski-Shapiro 
at Yale, finishing in 1981. He 
has held faculty positions at 
Rutgers University, Oklahoma 
State University, and The Ohio 
State University, as well as 
several visiting positions 
through the years. He has 
spent all of his professional 
life thinking about L-func- 
tions, but makes no claims  
of truly understanding them 
(and doubts the claims of 
anyone who says they do).

by James W. Cogdell
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The Erwin Schrödinger Institute 
regularly offers lecture courses 
and research seminars at an 
advanced graduate level. These 
courses and seminars are taught 
by Senior Research Fellows of  
the ESI who stay in Vienna for  
a period of several months.  
In bringing together young re- 
searchers working in Vienna and 
senior scientists from abroad,  
the ESI Senior Research Fellows 
programme contributes in an 
effective way to the scientific 
training of graduate students 
and postdocs of Vienna’s  
universities.

Page 38 and 40: Clippings 
from the course notebook that 
Cogdell used for his lectures.
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satisfying when things go well. It forces an interest-
ing concentration and perspective. Giving the stu- 
dents such opportunity for open ended questions 
and discussions gives them a sense of control over 
the direction and makes them an active participant 
in the course.

The origins of a colony (II). The srf program should  
be very rewarding for both the students and the 
lecturer. In my case, my srf tenure coincided with 
an esi Programme that I co-organized on “Auto
morphic Forms: Arithmetic and Geometry’’ held in 
January and February of 2012. My course was on 
L-functions for GL(n) and was intended as a good 
preparatory course for the topic of the Programme. 
Indeed, when the Programme came around, all of 
my students were regular participants, coming to 
most of the lectures (when they didn’t have other 
duties) and some of the junior participants in the 
Programme attended a few of my later course lec- 
tures. Two of the more advanced students from the 
course were invited to speak in the Programme. 
Their participation in the Programme was very re- 
warding to me as their instructor in the course. On 
the other hand, the srf lectures and their prepara-
tion impacted my own work. As part of the course, 
in order to help motivate the Langlands Program 
and the connections with arithmetic, I decided to 
devote one lecture to a survey of Artin L-functions. 
Artin wrote three papers on these L-functions in 
1923, 1930 and 1931. It was quite a challenge to try 
to distill these papers down to a single lecture, but  
in doing this I had several insights into Artin’s mo- 
tivation and sense of structure that he built into 
these L-functions. Not only were these revelations 
intellectually satisfying, they were  necessary for me 
to be able to give a coherent presentation of Artin’s 
work in my class and I subsequently expanded an 
article I had written on Artin L-functions to include 
these insights. This article dates from my partici

pation in the meeting “Emil Artin—His Work and 
His Life’’ held at the esi in January of 2006. For the 
accompanying volume on Artin I had prepared a 
paper On Artin L-functions based on my 2006 lec- 
ture. I took this time at esi to revise this article  
and in particular I have now included much of the 
material that I discussed in the lecture on Artin  
L-functions in my course. So for my own intellectual 
development, the chance to give the srf course was 
of significant importance.

The Senior Research Fellow programme, par- 
ticularly when coupled with an esi Thematic Pro- 
gramme, is one important way in which the esi 
impacts graduate education at the University of 
Vienna. As part of its mission to further the math- 
ematical and physical sciences, an impact on the 
next generation of scientists is paramount. Contact, 
both formal and informal, with the Senior Research 
Fellow can be very important for a students devel- 
opment. I still feel the influence of a summer 
workshop on Complex Varieties that I attended  
in Montreal in the summer of 1979, where I had the 
good fortune to interact with and attend lectures  
by Douady, Hirzebruch, Mumford,… as well as  
making connections with the algebraic geometers  
of my generation. I was very pleased to be able to 
repay a bit of this mathematical debt by participa- 
ting in the srf programme of the esi.

On the open road. While the preparing and giving  
of the srf lectures did take time and effort, there was 
plenty of time to devote to my own research agenda. 
During my tenure as a srf I also worked on a joint 
project with F. Shahidi of Purdue and T-L. Tsai of  
the National University of Taiwan on the “Local 
Langlands correspondence for GL(n) and the exte- 
rior and symmetric square ε-factors’’. This project 
was begun before my residence at esi, but the final 
work and the writing were done at esi, both during 
my srf tenure and during the subsequent Pro-

gramme. (Both Shahidi and Tsai were in residence  
at the esi in the month of January 2012 as part of  
the “Automorphic Forms: Arithmetic and Geom-
etry’’ programme.) In this work, we show that the 
local Langlands correspondence for GL(n) preserves 
both the exterior square and symmetric square  
L- and ε-factors. This is a measure of robustness of 
the local Langlands correspondence and hopefully 
will help us understand the local Artin ε-factors 
better. As part of this work, we established the local 
analytic stability of the exterior square γ-factor for 
supercuspidal representations of GL(n), a result of 
independent interest in the local theory of automor-
phic forms. This paper will eventually find a home  
in the esi Preprint archive.

On the other shore. I also took advantage of the cen- 
tral location of Vienna and the esi to take scientific 
trips both to the west and to the east. Before the start 
of my srf duties I traveled to Oberwolfach to take 
part in the meeting on “Emigration of Mathemati-
cians and Transmission of Mathematics: Historical 
Lessons and Consequences of the Third Reich’’ dur- 
ing late October and early November of 2011. This 
was related to my interest in Artin as mentioned 
above. In addition, I took a flight to Zurich to speak 
on my work with Shahidi and Tsai at eth and then 
took the train to Lausanne to speak on the same 
work at epfl. During the height of the frigid cold 
spell of the winter of 2011 I boarded the train at 
Wien Meidling for Budapest to give two talks at  
the Rényi Institute. While the trips to Oberwolfach, 
Zurich and Lausanne were planned in conjunction 
with my trip to esi, the trip to Budapest was some- 
what serendipitous, only arising when a colleague at 
Rényi learned through e-mail that I was but a train 
ride away. His reaction was an immediate “when are 
you coming to give a talk?’’, and so I made my first 
trip to Budapest.

At the Blue Unicorn. Alas, the life of a Senior Research 
Fellow is not all fun and games… there are serious 
cultural duties to perform in Vienna. Vienna is a 
musical city: Mozart, Beethoven, Mahler, … But my 
tastes run more post-Darmstadt to improvised, and 
Vienna is a perfect city for that as well. Where the 
more classically inclined might favor the Musik
verein, I frequented the Konzerthaus. I attended a 
Klangforum Wien concert which featured pieces by 
Boulez, Cerha, Feldman, Furrer, and Neuwirth. 
Cerha, Furrer and Neuwirth are all contemporary 

Viennese composers, and Cerha was in attendance.  
I attended the premier of an organ and electronics 
piece written and performed by Wolfgang Mitterer, 
another contemporary Viennese composer, as part 
of the Wien Modern festival. On the improvised side 
I heard the pianist Craig Taiborn and then a duo 
consisting of Theo Beckmann (voice) and Michael 
Wollny (piano). I also made my first foray into the 
Wiener Staatsoper to hear a performance of Janáček’s 
“Aus einem Totenhaus’’. One of the advantages of  
an interest in contemporary music is that tickets 
seemed to be readily available and I could decide 
with very little notice what to attend. (For the more 
classical fare at the Musikverein or the Staatsoper  
I understand one must plan and purchase tickets 
before one even boards the plane to Vienna.) There 
was even music at the esi! As part of the Programme 
on Automorphic Forms, there was a piano recital by 
Gülsin Onay, a Turkish State Artist, with a program 
of Beethoven, Bartok, and Saygun. It was attended 
by the workshop participants, other members of the 
esi community and two of the Turkish ambassadors 
in Vienna. Vienna also has wonderful museums 
throughout the city. Probably the museum highlight 
of this stay was the opening of the Claes Oldenburg 
exhibit at mumok. I also finally made it to see “The 
Last Judgement’’ triptych by Hieronymus Bosch at 
the Akademie für die Bildenden Künste. In a more 
classical vein, I toured the Lichtenstein Museum, 
near the esi, sadly during its last week as a public 
museum. Vienna has a very eclectic food scene, and 
I did eat most of my meals out. I will admit I have  
a proclivity for both traditional and contemporary 
Viennese fare, and Austrian wines, and there are 
many fine restaurants and cafes both near and far 
from the esi to partake from (as well as some very 
interesting local “hole in the walls”). But when I 
think back on it, I realize that I also had fine Chi- 
nese, Greek, Italian, Japanese, Persian, and Vegetar-
ian meals as well. But, in spite of all the wondrous 
things one can do in Vienna, I think I still find that 
what I enjoy most is just wandering the streets, par- 
ticularly in the first district. I prefer them at night, 
when they are more likely to be empty, and covered 
with snow if possible. (Unfortunately, there was  
little snow during this visit.) My only regrets are the 
places I didn’t get to visit: the Wittgenstein House, 
the Anselm Kiefer exhibit, Roithamer’s Cone, …  
but there will be future visits. ■
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— 1998 —
Spectral Geometry and Its Applications  
(L. Friedlander, V. Guillemin),  
February 1–June 30, 1998

Schrödinger Operators With Magnetic Fields  
(I. Herbst, T. Hoffmann-Ostenhof,  
J. Yngvason), March 1–June 30, 1998

Number Theory and Physics I. Convexity  
(P. M. Gruber), September–December, 1998

Number Theory and Physics II. Quantum Field 
Theory and the Statistical Distribution of Prime 
Numbers (I. Todorov),  
September 1–November 30, 1998

Quantization, Generalized BRS Cohomology  
and Anomalies (R. A. Bertlmann, M. Kreuzer,  
W. Kummer, A. Rebhan, M. Schweda), 
September 28–December 31, 1998

Charged Particle Kinetics  
(C. Schmeiser, P. Markowich),  
October 5, 1998–January 31, 1999

— 1999 —
Functional Analysis (J. B. Cooper),  
January 1–July 31, 1999

Nonequilibrium Statistical Mechanics  
(G. Gallavotti, H. Posch, H. Spohn), 
February 1–March 31, 1999

Holonomy Groups in Differential Geometry  
(D. Alekseevsky, K. Galicki, C. LeBrun), 
September 6–December 31, 1999

Complex Analysis (F. Haslinger, H. Upmeier), 
August 1–November 15, 1999

Applications of Integrability (A. Alekseev,  
L. Faddeev, H. Grosse),  
August 15–October 31, 1999

ESI Thematic Programmes  
1993–2013

— 1993 —
Two-Dimensional Quantum Field Theory  
(H. Grosse), February 15–June 30, 1993

Schrödinger Operators  
(T. Hoffmann-Ostenhof), 1993

Differential Geometry (P. W. Michor), 1993

— 1994 —
Ergodicity in Non-Commutative Algebras
(H. Narnhofer), spring 1994

Mathematical Relativity (P. C. Aichelburg,  
R. Beig), July 1–September 15, 1994

Gibbsian Random Fields (R. Dobrushin), 
August 1–December 31, 1994

Spinors, Twistors and Conformal Invariants  
(A. Trautman, V. Souek, H. Urbantke), 
September 1–October 31, 1994

Quanternionic and Hyper-Kähler Manifolds  
(D. Alekseevsky, S. Salamon),  
September 1–December 31, 1994

— 1995 —
Complex Analysis (F. Haslinger),  
January 1–March 31, 1995

Noncommutative Differential Geometry  
(A. Connes, M. Dubois-Voilette,  
P. W. Michor), spring 1995

Field Theory and Differential Geometry  
(G. Marmo, P. W. Michor),  
May 15–July 31, 1995

Geometry of Nonlinear Partial Differential 
Equations (A. Vinogradov), spring 1995

Gibbs Random Fields and Phase Transitions  
(R. Dobrushin, R. Kotecký), fall 1995

Reaction-Diffusion Equations in Biological  
Context (K. Sigmund, R. Bürger,  
J. Hofbauer),  
September 1–November 15, 1995

The Foundational Period 
1990–1993

The years 1990–1993, preceding the official 
foundation of the Erwin Schrödinger International 
Institute for Mathematical Physics in Vienna, had 
been a time of intense preparations involving 
many mathematicians and physicists. This phase 
is very well documented and described in the 
Appendix A to the Scientific Report for the years 
1993–2002 which can be found on the web page 
of the ESI under www.esi.ac.at/about/reports.html. 
Walter Thirring, Peter Michor and Heide Narnhofer, 
acting on behalf of the scientific community, 
played a decisive role in the foundational period of 
the ESI and beyond. Their initiative was well taken 
up by the Ministry of Science and Research.

Three workshops, organized in the years 
1991–1992, underlined the importance of the 
enterprise to found a research institute at the 
interface of mathematics and physics in Vienna 
and resulted in considerable momentum. They 
form the first scientific activities related to  
the ESI:

Interfaces Between Mathematics and Physics I  
(P. W. Michor, H. Narnhofer, W. Thirring), 
May 22–23, 1991

Interfaces Between Mathematics and Physics II  
(P. W. Michor, H. Narnhofer, W. Thirring), 
March 2-6, 1992

75 years of Radon Transform  
(S. Gindikin, P. W. Michor),  
August 31–September 4, 1992

— 2000 —
Duality, String Theory and M-Theory  
(H. Grosse, M. Kreuzer, S. Theisen),  
March 15–July 15, 2000

Representation Theory
(V. Kac, A. Kirillov), April 1–July 31, 2000

Confinement
(W. Lucha, A. Martin, F. Schöberl),  
May 1–June 30, 2000

Algebraic Groups, Invariant Theory, and 
Applications (B. Kostant, P. W. Michor,  
F. Pauer, V. Popov),  
August 1–December 29, 2000

Quantum Measurement and Information  
(A. Zeilinger, A. Eckert, P. Zoller), 
September 3–December 20, 2000

— 2001 —
Scattering Theory (V. Petkov, A. Vasy,  
M. Zworski), March 1–July 31, 2001

Random Walks (V. Kaimanovich, K. Schmidt, 
W. Woess), February 19–July 13, 2001

Mathematical Cosmology (P.C. Aichelburg,  
G. F. R. Ellis, V. Moncrief, J. Wainwright), 
June 15–August 15, 2001

Mathematical Aspects of String Theory  
(M. Blau, J. Figueroa O’Farrill, A. Schwarz), 
September 3–November 16, 2001

Nonlinear Schrödinger and Quantum Boltzmann 
Equations (P. Gérard, P. Markowich,  
N. J. Mauser, G. Papanicolau), fall 2001

— 2002 —
Developed Turbulence (K. Gawedzki,  
A. Kupiainen, M. Vergassola),  
May 15–July 14, 2002

Arithmetic, Automata, and Asymptotics  
(R. Tichy, P. Grabner),  
March 22–July 5, 2002

Quantum Field Theory on Curved Space Time  
(K. Fredenhagen, R. Wald, J. Yngvason), 
July 1–August 31, 2002

Condensed Matter Physics—Dynamics,  
Geometry and Spectral Theory  
(V. Bach, R. Seiler),  
August 6, 1995–February 24, 1996

— 1996 —
Condensed Matter Physics—Dynamics,  
Geometry and Spectral Theory  
(V. Bach, R. Seiler),  
August 6, 1995–February 24, 1996

Topological, Conformal and Integrable  
Field Theory (K. Gawedzki, H. Grosse),  
February 15–May 14, 1996

Representation Theory With Applications to 
Mathematical Physics (I. Penkov, J. A. Wolf), 
April 1–June 30, 1996

Mathematical Problems of Quantum Gravity  
(A. Ashtekhar, P. C. Aichelburg),  
July 1–August 31, 1996

Hyperbolic Dynamical Systems With Singularities  
(D. Szász), September 1–December 31, 1996

— 1997 —
Ergodic Theory and Dynamical Systems  
(A. Katok, K. Schmidt, G. Margulis), 
January 1–August 30, 1997

Mathematic Relativity (R. Beig),  
January 1–June 30, 1997

Spaces of Geodesics and Complex Structures in 
General Relativity and Differential Geometry  
(L. Mason, P. Nurowski, H. Urbantke), 
March 1–July 31, 1997

Local Quantum Physics (D. Buchholz,  
H. Narnhofer, J. Yngvason),  
September 1–December 31, 1997

Nonlinear Therory of Generalized Functions  
(M. Oberguggenberger),  
September–December, 1997

Aspects of Foliation Theory in Geometry,  
Topology and Physics (J. Glazebrook,  
F. Kamber, K. Richardson),  
July 15–November 30, 2002

Noncommutative Geometry and Quantum Field 
Theory, Feynman Diagrams in Mathematics and 
Physics (H. Grosse, J. Madore, D. Kreimer,  
J. Mickelsson, I. Todorov),  
August 26–November 22, 2002

— 2003 —
Mathematical Population Genetics and  
Statistical Physics (E. Baake, M. Baake  
and R. Bürger),  
December 1, 2002–February 28, 2003

Kakeya-Related Problems in Analysis  
(A. Iosevich, I. Laba, D. Müller),  
February 15–April 15, 2003

Penrose Inequalities (R. Beig, P. Chruściel,  
W. Simon), June 2–July 29, 2003

Poisson Geometry and Moment Maps  
(A. Alekseev, T. Ratiu, S. Haller,  
P. W. Michor), August 1–October 15, 2003

Gravity in Two Dimensions (W. Kummer,  
H. Nicolai, D. V. Vassilevich),  
September 8–October 31, 2003

— 2004 —
Geometric and Analytic Problems Related to 
Cartan Connections (T. Branson, A. Cap,  
J. Slovak), January 2–April 20, 2004

String Theory in Curved Backgrounds and 
Boundary Conformal Field Theory  
(H. Grosse, A. Recknagel, V. Schomerus),  
March 1–June 30, 2004

Tensor Categories in Mathematics and Physics  
(J. Fuchs, Y.-Z. Huang, A. Kirillov,  
M. Kreuzer, J. Lepowsky, C. Schweigert), 
May 31–July 9, 2004

Singularity Formation in Non-linear Evolution 
Equations (P. C. Aichelburg, P. Bizoń),  
July 7–August 15, 2004

Many-Body Quantum Theory  
(M. Salmhofer, J. Yngvason),  
September 1–December 31, 2004
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— 2005 —
Open Quantum Systems (J. Derezinski,  
G. M. Graf, J. Yngvason),  
January 20–March 31, 2005

Modern Methods of Time-Frequency Analysis  
(J. J. Benedetto, H. G. Feichtinger,  
K. Gröchenig), April 4–July 8, 2005

Geometric Methods in Analysis and Probability  
(J. Cooper, P. W. Jones, V. Milman, P. Müller, 
A. Pajor, D. Preiss, C. Schütt, C. Stegall), 
May 25–August 5, 2005

Complex Analysis, Operator Theory and 
Applications to Mathematical Physics  
(F. Haslinger, E. Straube, H. Upmeier), 
September 5–November 11, 2005

Geometry of Pseudo-Riemannian Manifolds  
With Applications to Physics (D. Alekseevsky,  
H. Baum, J. Konderak),  
September 1–December 31, 2005

— 2006 —
Arithmetic Algebraic Geometry (S. S. Kudla,  
M. Rapoport, J. Schwermer),  
January 2–February 18, 2006

Diophantine Approximation and Heights  
(D. Masser, H. P. Schlickewei,  
W. M. Schmidt), February 27–May 12, 2006

Rigidity and Flexibility (V. Alexandrov,  
I. Sabitov, H. Stachel), April 23–May 6, 2006

Gerbes, Groupoids, and Quantum Field Theory  
(P. Aschieri, H. Grosse, B. Jurco,  
J. Mickelsson, P. Xu), May 8–July 31, 2006

Complex Quantum and Classical Systems  
and Effective Equations (E. Carlen,  
L. Erdős, M. Loss),  
May 15–August 15, 2006

Homological Mirror Symmetry (A. Kapustin,  
M. Kreuzer, A. Polishchuk,  
K.-G. Schlesinger), June 12–28, 2006

Global Optimization, Integrating Convexity, 
Optimization, Logic Programming, and 
Computational Algebraic Geometry (I. Bomze,  
I. Emiris, A. Neumaier, L. Wolsey),  
October 1–December 23, 2006

— 2011 —
Bialgebras in Free Probability (M. Aguiar,  
F. Lehner, R. Speicher, D. Voiculescu), 
February 1–April 22, 2011

Nonlinear Waves (A. Constantin,  
J. Escher, D. Lannes, W. Strauss),  
April 4–June 30, 2011

Dynamics of General Relativity: Numerical  
and Analytical Approaches (L. Andersson,  
R. Beig, M. Heinzle, S. Husa),  
July 4–September 22, 2011

Combinatorics, Number Theory, and Dynamical 
Systems (M. Einsiedler, P. Grabner,  
C. Krattenthaler, T. Ziegler),  
October 1–November 30, 2011

— 2012 —
Automorphic Forms: Arithmetic and Geometry  
(J. W. Cogdell, C. Moeglin, G. Muic,  
J. Schwermer), January 3–February 28, 2012

K-Theory and Quantum Fields (M. Ando,  
A. Carey, H. Grosse, J. Mickelsson),  
May 21–July 27, 2012

The Interaction of Geometry and Representation 
Theory. Exploring New Frontiers (A. Cap,  
A. L. Carey, A. R. Gover, C. R. Graham,  
J. Slovak), September 3–14, 2012

Modern Methods of Time-Frequency Analysis II  
(H. G. Feichtinger, K. Gröchenig), 
September 10–December 15, 2012

— 2013 —
Teichmüller Theory (L. Funar, Y. Neretin,  
A. Papadopoulos, R. Penner),  
January 28–April 21, 2013

The Geometry of Topological D-Branes,  
Categories and Applications (S. Gukov,  
M. Herbst, A. Kapustin, L. Katzarkov,  
Y. Soibelman), April 22–July 6, 2013

Jets and Quantum Fields for LHC and Future 
Colliders (A. H. Hoang, I. W. Stewart),  
July 1–31, 2013

Forcing, Large Cardinals and Descriptive Set 
Theory (S. D. Friedman, M. Goldstern,  
A. Kechris, J. Kellner, W. H. Woodin), 
September 2–October 25, 2013

Heights in Diophantine Geometry, Group Theory 
and Additive Combinatorics (R. Tichy, J. Vaaler, 
M. Widmer, U. Zannier),  
October 21–December 20, 2013

— 2007 —
Automorphic Forms, Geometry and Arithmetic  
(S. S. Kudla, M. Rapoport, J. Schwermer), 
February 11–February 24, 2007

Amenability (A. Erschler, V. Kaimanovich,  
K. Schmidt), February 26–July 31, 2007

Mathematical and Physical Aspects of 
Perturbative Approaches to Quantum Field  
Theory (R. Brunetti, K. Fredenhagen,  
D. Kreimer, J. Yngvason),  
March 1–April 30, 2007

Poisson Sigma Models, Lie Algebroids, 
Deformations, and Higher Analogues  
(H. Bursztyn, H. Grosse, T. Strobl),  
August 1–September 20, 2007

Applications of the Renormalization Group  
(G. Gentile, H. Grosse, G. Huisken,  
V. Mastropietro),  
October 15–November 23, 2007

— 2008 —
Combinatorics and Statistical Physics  
(M. Bousquet-Mélou, M. Drmota,  
C. Krattenthaler, B. Nienhuis),  
February 1–June 15, 2008

Metastability and Rare Events in Complex  
Systems (P. Bolhuis, C. Dellago, E. van den 
Eijnden), February 1–April 30, 2008

Hyperbolic Dynamical Systems (L.-S. Young,  
H. Posch, D. Szász), May 25–July 5, 2008

Operator Algebras and Conformal Field  
Theory (Y. Kawahigashi, R. Longo,  
K.-H. Rehren, J. Yngvason),  
August 25–December 14, 2008

Summer and  
Winter Schools

Summer School on Nonlinear Wave Equations  
(Y. Brenier, S. Klainerman, N. Mauser,  
A. Selberg), July 7–11, 2004

Summer School on Vertex Algebras and Related 
Topics (E. Frenkel, V. Kac, J. Schwermer), 
June 12–July 2, 2005

Winter School: Langlands Duality and Physics  
(E. Frenkel, N. Hitchin, J. Schwermer,  
K. Vilonen), January 9–20, 2007

Summer School on Combinatorics and Statistical 
Physics (M. Drmota, C. Krattenthaler,  
B. Nienhuis, M. Bousquet-Mélou),  
July 7–18, 2008

Summer School on Current Topics in  
Mathematical Physics (C. Hainzl, R. Seiringer,  
J. Yngvason), July 21–31, 2008

Winter School: Mathematics at the Turn  
of the 20th Century: Explorations and Beyond  
(D. D. Fenster, J. Schwermer),  
January 7–12, 2009

ESI May Seminar 2010 in Number Theory  
(J. Schwermer), May 2–9, 2010

Summer School on Cartan Connections, Geometry 
of Homogeneous Spaces, and Dynamics (A. Cap, 
C. Frances, K. Melnick), July 10–23, 2011

Summer School in Mathematical Physics  
(C. Hainzl, R. Seiringer),  
August 16–24, 2011

EMS-IAMP Summer School Quantum Chaos  
(N. Anantharaman, S. Morris Zeltditch,  
St. Nonnenmacher, Z. Rudnick),  
July 30–August 3, 2012

— 2009 —
Representation Theory of Reductive Groups— 
Local and Global Aspects (G. Henniart,  
G. Muic and J. Schwermer),  
January 2–February 28, 2009

Number Theory and Physics (A. Carey,  
H. Grosse, D. Kreimer, S. Paycha,  
S. Rosenberg and N. Yui),  
March 2–April 18, 2009

Selected Topics in Spectral Theory (B. Helffer,  
T. Hoffmann-Ostenhof and A. Laptev),  
May 5–July 25, 2009

Large Cardinals and Descriptive Set Theory  
(S. Friedman, M. Goldstern, R. Jensen,  
A. Kechris and W. H. Woodin),  
June 14–27, 2009

Entanglement and Correlations in Many-Body 
Quantum Mechanics (B. Nachtergaele,  
F. Verstraete and R. Werner),  
August 10–October 17, 2009

The d-bar-Neumann Problem: Analysis,  
Geometry and Potential Theory (F. Haslinger,  
B. Lamel, E. Straube),  
October 27–December 23, 2009

— 2010 —
Quantitative Studies of Nonlinear Wave 
Phenomena (P. C. Aichelburg, P. Bizoń,  
W. Schlag), January 7–February 28, 2010

Quantum Field Theory on Curved Space-Times  
and Curved Target-Spaces (M. Gaberdiel,  
S. Hollands, V. Schomerus, J. Yngvason), 
March 1–April 30, 2010

Matter and Radiation (V. Bach, J. Fröhlich,  
J. Yngvason), May 5–July 30, 2010

Topological String Theory, Modularity and 
Non-Perturbative Physics (L. Katzarkov,  
A. Klemm, M. Kreuzer, D. Zagier),  
June 6–August 15, 2010

Anti-de Sitter Holography and the Quark-Gluon 
Plasma: Analytical and Numerical Aspects  
(A. Rebhan, K. Landsteiner, S. Husa), 
August 2–October 29, 2010

Higher Structures in Mathematics and Physics  
(A. Alekseev, H. Bursztyn, T. Strobl), 
September 1–November 11, 2010
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Junior Research Fellows 
2004–2011

From 2004 to 2011 the ESI Junior Research 
Fellowships Program was in place. There was a 
total of 153 fellowships granted out of 515 appli- 
cations. The total number of months granted was 
510. The Junior research fellows came from 38  
different countries and stayed for a period of  
3 months and 10 days on average. 

Below you find a list of all Junior Research  
Fellows present at esi between April 26th 2004  
and February 28th 2011.

— 2004 —
1st Call for proposals: February 15, 2004
Number of applications: 40
Number of fellowships granted: 18
Number of months granted: 48 for 2004,  
19 for 2005

2nd Call for proposals: May 31, 2004
Number of applications: 38
Number of fellowships granted: 9
Number of months granted: 8 for 2004,  
18 for 2005, 2 for 2006

3rd Call for proposals: November 15, 2004
Number of applications: 65
Number of fellowships granted: 7
Number of months granted: 20 for 2005

Junior Research Fellows present at  
the esi in 2004 (4 female, 14 male):

Wolfgang Angerer, Austria
Jessica Barrett, Great Britain 
Matthias Birkner, Germany
Jeremy Clark, usa
Ionas Erb, Germany
Borislav Gajic, Serbia 
Alessandro Giuliani, Italy
Marcela Hanzer, Croatia
Bianca Mladek, Austria
Ari Pakman, Argentina
Milena Radnovic, Serbia
Karl Georg Schlesinger, Germany 
Jeff Selden, usa

Henning Bostelmann, Germany
Pierluigi Falco, Italy
Josh Garretson, usa
Gerald Gotsbacher, Austria
Peggy Kao, Taiwan
Aleksey Kostenko, Ukraine
Gandalf Lechner, Germany
Christian Lübbe, Germany
Sean Murray, Ireland
Tomasz Paterek, Poland
Pietro Polesello, Italy
Julia Reffy, Hungary
Florian Schätz, Austria
Evelina Shamarova, Russia
Wonmin Son, Korea
Mihaly Weiner, Hungary
Michael Wohlgenannt, Austria

— 2008 —
1st Call for proposals: April 11, 2008
Number of applications: 34
Number of fellowships granted: 10
Number of months granted: 16 for 2008,  
14 for 2009

2nd Call for proposals: November 14, 2008
Number of applications: 36
Number of fellowships granted: 9
Number of months granted: 34 for 2009

Junior Research Fellows present at  
the esi in 2008 (7 female, 16 male):

Hendrik Adorf, Germany
Vasiliki Anagnostopoulou, Greece
Caterina Cusulin, Italy
Philipp Geiger, Austria
Neven Grbac, Croatia
Harald Grobner, Austria
Minh Ha Quang, Vietnam
Eman Hamza, Egypt
Matthieu Josuat-Verges, France
Peggy Kao, Australia
Aleksey Kostenko, Ukraine
Christian Lübbe, Germany
Mate Matolcsi, Hungary
Philippe Nadeau, France
Maryna Nesterenko, Ukraine

Alexandre Stefanov, Bulgaria
Jesper Tidblom, Sweden
Christian Tutschka, Austria 
Matteo Viale, Italy
Vojtěch Žadník, Czech Republic

— 2005 —
1st Call for proposals: June 15, 2005
Number of applications: 36
Number of fellowships granted: 9
Number of months granted: 5 for 2005,  
25 for 2006

2nd Call for proposals: October 15, 2005
Number of applications: 34
Number of fellowships granted: 11
Number of months granted: 36 for 2006

Junior Research Fellows present at  
the esi in 2005 (5 female, 17 male):

Sarah Bailey, United States
Christian Böhmer, Germany
Jessica Barrett, Great Britain
Matthias Birkner, Germany
Elena Cordero, Italy
Anton Galaev, Russia 
Sebastian Guttenberg, Germany 
Marcela Hanzer, Croatia 
Anne-Katrin Herbig, Germany
Felipe Leitner, Germany 
Thomas Neukirchner, Germany
Kasso Okoudjou, Benin
Alexander Powell, United States
Mikhail Pevzner, Russia 
Nenad Teofanov, Serbia
Jan Tichavsky, Czech Republic
Alexandre Stefanov, Bulgaria
Stefan Wenger, Switzerland
Marcin Wiesniak, Poland
Michael Wohlgenannt, Austria
Vojtěch Žadník, Czech Republic
Roland Zweimüller, Austria

— 2006 —
1st Call for proposals: March 31, 2006
Number of applications: 27
Number of fellowships granted: 12
Number of months granted: 22 for 2006,  
9 for 2007

2nd Call for proposals: October 31, 2006
Number of applications: 42

Radu Saghin, Romania
Maria Schimpf, Austria
Josef Silhan, Czech Republic
Rafal Suszek, Poland
Balint Vetö, Hungary
Le Anh Vinh, Vietnam
Mihaly Weiner, Hungary
Lenka Zalabova, Czech Republic

— 2009 —
1st Call for proposals: April 17, 2009
Number of applications: 44
Number of fellowships granted: 13
Number of months granted: 32 for 2009,  
14 for 2010

2nd Call for proposals: October 11, 2009
Number of applications: 20
Number of fellowships granted: 7
Number of months granted: 24 for 2010

Junior Research Fellows present at  
the esi in 2009 (9 female, 18 male):

Lior Alexandra Aermark, Israel
Jose Aliste, Chile
Emanuela Bianchi, Italy
Francis Brown, Great Britain
Claudio Dappiaggi, Italy
Slawomir Dinew, Poland
Zywomir Dinew, Poland
Anastasia Jivulescu, Romania
Lukasz Kosinski, Poland
Rongmin Lu, Singapore
Anca Matioc, Romania
Kostyantyn Medynets, Ukraine
Karin Melnick, usa
Wolfgang Moens, Belgium
Mathieu Molitor, France
Milan Mosonyi, Hungary
Carolina Neira, Colombia
Nicolas Raymond, France
Jean Ruppenthal, Germany
Josef Silhan, Czech Republic
Jean-Charles Sunye, France
Kirsten Vogeler, Germany
Zhituo Wang, China
Jiangyang You, China
Lenka Zalabova, Czech Republic
Lei Zhang, China
Magdalena Zych, Poland

Number of fellowships granted: 15
Number of months granted: 41 for 2007

Junior Research Fellows present at  
the esi in 2006 (7 female, 21 male ):

Katie Bloor, Great Britain 
Francesco D’Andrea, Italy
Spyridon Dendrinos, Greece
Martyn De Vries, Netherlands
Karla Diaz-Ordaz, Mexico
Pierluigi Falco, Italy
Anton Galaev, Russia
Victor Junwei Guo, China
Eman Hamza, Egypt
Nataliya Ivanova, Ukraine
Adam Joyce, Great Britain
Wolfgang Lechner, Austria
Richard Miles, Great Britain
Thierry Monteil, France
Ian Morris, Great Britain
Milan Mosonyi, Hungary
Tomasz Paterek, Poland
Evangelia Petrou, Greece
Michail Pevzner, Russia
Peter Pickl, Germany
Pietro Polesello, Italy
Catherine Richard, France
Hisham Sati, Lebanon
Jean Savinien, France
Emanuel Scheidegger, Switzerland
Evelina Shamarova, Russia
Mathieu Stienon, Belgium
Alexandr Usnich, Belarus

— 2007 —
1st Call for proposals: April 30, 2007
Number of applications: 37
Number of fellowships granted: 9
Number of months granted: 19 for 2007,  
16 for 2008

2nd Call for proposals: November 10, 2007
Number of applications: 41
Number of fellowships granted: 15
Number of months granted: 57 for 2008

Junior Research Fellows present at  
the esi in 2007 (3 female, 17 male):

Stuart Armstrong, Canada
Christoph Bergbauer, Germany
Olivier Bernardi, France

— 2010 —
Call for proposals: February 12, 2010

Number of applications: 21
Number of fellowships granted: 9
Number of months granted: 27 for 2010,  
8 for 2011

Junior Research Fellows present at  
the esi in 2010 (6 female, 20 male):

Camilo Arias Abad, Colombia
Matteo Cardella, Italy
Claudio Dappiaggi, Italy
Zywomir Dinew, Poland/Bulgaria
Slawomir Dinew, Poland/Bulgaria
Alexander Fish, Israel
Richard Green, Australia
Rika Hagihara, Japan
Myrto Kallipoliti, Greece
Angelika Kroner, Austria
Helge Krüger, Germany
Wojciech Krynski, Poland
Christiane Losert, Austria
Rongmin Lu, Singapore
Kostyantyn Medynets, Ukraine
Wolfgang Moens, Belgium
Vladimir N. Salnikov, Russia
Christian Ortiz, Chile
Piotr Przytyczki, Poland
Chris Rogers, usa
Florian Schätz, Austria
Susanne Schimpf, Germany
Nora Seeliger, Germany
Marcel Vonk, The Netherlands
Matthias Westrich, Germany
Mark Williamson, Great Britain

— 2011 —
Junior Research Fellows present at  
the esi in 2011 (2 female, 2 male):

Angelika Kroner, Austria
Wojciech Krynski, Poland
Nora Seeliger, Germany
Mark Williamson, Great Britain
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Senior Research Fellows 
2002–2012

From 2002 to 2012, there have been 48 lectures 
held by Senior Research Fellows that were at the  
ESI for a longer research period.

— 2002/03 —
fall term 2002:

Arkadi Onishchik (Yaroslavl State U, Russia): 
Real Representation Theory of Lie Algebras  
and Lie Groups

Anatoly Vershik (Steklov Institute, St. 
Petersburg, Russia): Measure Theoretic 
Constructions and Their Applications in Ergodic 
Theory, Asymptotics, Combinatorics,  
and Geometry

spring term 2003:

Michael Lacey (Georgia Institute of 
Technology, Atlanta, usa): Recent Trends  
in Fourier Analysis

Peter van Nieuwenhuizen (C. N. Yang 
Institute for Theoretical Physics, Stony 
Brook U, New York, usa): N=1 and N=2 
Supersymmetry and Supergravity

— 2007/08 —
fall term 2007:

Christos N. Likos (U Düsseldorf, Germany): 
Introduction to Theoretical Soft Matter Physics

Radoslav Rashkov (Sofia U, Bulgaria): 
Dualities Between Gauge Theories and Strings

John Barrett (U Nottingham, uk) and 
Richard Szabo (U of Edinburgh, uk):  
Two short courses on Theoretical Physics

— 2008/09 —
fall term 2008:

Nigel Higson (Penn State U, usa):  
Index Theory, Groupoids and Noncommutative 
Geometry

Goran Muic (U Zagreb, Croatia): Selected 
Topics in the Theory of Automorphic Forms for 
Reductive Groups

Feng Xu (UC Riverside, usa): Operator 
Algebras and Conformal Field Theory

spring term 2009:

Michael Loss (Georgia Institute of 
Technology, Atlanta, usa): Spectral Inequal- 
ities and Their Applications to Variational 
Problems and Evolution Equations

Raimar Wulkenhaar (U Münster, Germany): 
Spektrale Tripel in nichtkommutativer Geometrie 
und Quantenfeldtheorie

— 2003/04 —
fall term 2003:

Vladimir Mazya (Linköping U, Sweden): 
Sobolev Spaces With Applications to PDE

Jürgen Rohlfs (U Eichstätt, Germany): 
Algebraic Groups Over Number Fields and  
Related Geometric Questions

Peter van Nieuwenhuizen (C. N. Yang 
Institute for Theoretical Physics, Stony 
Brook U, New York, usa): N=1 and N=2 
Supersymmetry and Supergravity, continuation  
of the spring term lecture course

spring term 2004:

Werner Ballmann (U Bonn, Germany):  
Über die Geometrie der Gebäude

Jürgen Fuchs (Karlstad U, Sweden):  
Conformal Field Theory

— 2004/05 —
fall term 2004:

Manfred Salmhofer (U Leipzig, Germany): 
Renormalization Theory—Analysis and 
Applications

Anton Wakolbinger (U Frankfurt, 
Germany): Stochastische Prozesse aus der 
Populationsgenetik

Vlatko Vedral (Imperial College, London, 
uk): Foundations of Quantum Information

spring term 2005:

Werner Ballmann (U Bonn, Germany): 
Kählergeometrie

Jan Derezinski (Warsaw U, Poland):  
Operator Algebras and Their Applications  
in Physics

Anatoly Vershik (Steklov Institute, St. 
Petersburg, Russia): Representation Theory  
of Symmetric Groups, Graphs, Universality

Emil Straube (Texas A&M U, College 
Station, usa): The L²-Sobolev Theory of the 
d-bar-Neumann Problem

— 2009/10 —
fall term 2009:

Peter West (King’s College, London, uk): 
Supergravity Theories

Jeff McNeal (Ohio State U, Columbus, usa): 
L²-Methods in Complex Analysis

spring term 2010:

Neven Grbac (U Rijeka, Croatia):  
Eisenstein Series

Stefan Hollands (Cardiff U, uk): Quantum 
Field Theory on Curved Spacetimes

Peter West (King’s College, London, uk):  
E-Theory

— 2010/11 —
fall term 2010:

Tykal Venkataramana (Tata Institute, 
Mumbai, India): Representations Contributing 
to Cohomology of Arithmetic Groups

spring term 2011:

Bruno Nachtergaele (UC Davis, usa): 
Quantum Spin Systems. An Introduction to the 
General Theory and Discussion of Recent 
Developments

Michael Baake (U Bielefeld, Germany):  
Spektraltheorie dynamischer Systeme und 
aperiodische Ordnung

Kenneth Dykema (Texas A&M U, College 
Station, usa) and Roland Speicher  
(U Saarland, Germany): Free Probability Theory

Peter West (King’s College, London, uk): 
Symmetries of Strings and Branes, continuation 
of the spring term lecture course

— 2011/12 —
fall term 2011:

James W. Cogdell (Ohio State U, Columbus, 
usa): L-functions and Functoriality

spring term 2012:

Detlev Buchholz (U Göttingen, Germany): 
Fundamentals and Highlights of Algebraic 
Quantum Fields

Eduard Feireisl (Academy of Sciences, 
Prague, Czech Republic): Mathematics and 
Complete Fluid Systems

— 2005/06 —
fall term 2005:

Emil Straube (Texas A&M U, College 
Station, usa): The L²-Sobolev Theory of the 
d-bar-Neumann Problem, continuation of the 
spring term lecture course

Bernard Helffer (U Paris Sud-Orsay, France): 
Introduction to the Spectral Theory for Schrödinger 
Operators With Magnetic Fields and Application

Boban Velickovic (U Paris Diderot, France): 
Introduction to Descriptive Set Theory

spring term 2006:

David Masser (U Basel, Switzerland):  
Heights in Diophantine Geometry

Mathai Varghese (U Adelaide, Australia): 
K-Theory Applied to Physics

— 2006/07 —
fall term 2006:

Ioan Badulescu (U Poitiers, France): 
Representation Theory of the General Linear  
Group Over a Division Algebra

Thomas Mohaupt (U Liverpool, uk):  
Black Holes, Supersymmetry and Strings

Miroslav Englis (Academy of Sciences, 
Prague, Czech Republic): Analysis on  
Complex Symmetric Spaces

spring term 2007:

Miroslav Englis (Academy of Sciences, 
Prague, Czech Republic): Analysis on Complex 
Symmetric Spaces, continuation of the fall 
term 2006 lecture course

Vadim Kaimanovich (International U 
Bremen, Germany): Boundaries of Groups: 
Geometric and Probabilistic Aspects

Thomas Mohaupt (U Liverpool, uk):  
Black Holes, Supersymmetry and Strings, 
continuation of the fall term 2006 lecture 
course
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