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Editorial
Klaus Schmidt

This summer saw the
deaths of two eminent
physicists who had
had close links with
the ESI over many
years and to whom
the ESI remains grate-
ful for their friendship

over many years.
WOLFGANG KUMMER, Professor for

Theoretical Physics at the Vienna Univer-
sity of Technology (VUT), was a mem-
ber of the ‘Vorstand’ (Governing Board)
of the Erwin Schrödinger Institute from
1993 until 2005 and was elected Honorary
Member of the Institute when he resigned
from the board in 2005. He was instrumen-
tal in encouraging and maintaining scien-
tific links between the ESI and the VUT
by co-organizing scientific programmes at
the ESI and co-hosting ESI Senior Re-
search Fellows on several occasions. The
ESI owes him many valuable suggestions,
constructive criticism and scientific stimu-

lation.
JULIUS WESS was a key participant

in the workshop Interfaces between Math-
ematics and Physics in Vienna in May
1991 which laid the foundation for the Er-
win Schrödinger Institute, both scientifi-
cally and politically. He helped to impress
on the Minister for Science at that time,
Erhard Busek, the desirability and, indeed,
necessity of creating a research institute
to provide a meeting place where scien-
tists from Eastern Europe could interact
with the international scientific community
at a period of great political and financial
uncertainty in the post-communist world.
Julius Wess helped the ESI on a second oc-
casion, when Walter Thirring fell seriously
ill in early 1992 and Julius Wess chaired
a second workshop on Interfaces between
Mathematics and Physics in March 1992
and took charge of the negotiations with
the Austrian Ministry of Science which had
reached a crucial point at that stage. It is
fair to say that Julius Wess made a signif-
icant contribution both to the foundation
and the scientific development of the ESI.

Julius Wess was elected Honorary
Member of the ESI in 2005.

Wolfgang Kummer
1935 – 2007
Joachim Burgdörfer

The Austrian physics
community received
unexpectedly the sad
news of Wolfgang
Kummer’s passing
away on July 15, 2007
after a long and coura-
geous battle with can-
cer. Just a few days earlier, Wolfgang had
given in a phone conversation with the au-
thor of these lines an up-beat assessment
of a new treatment he was receiving and
to which he responded well. He was look-
ing forward to a further improvement of
his condition and he made already plans
to return to ‘his’ Institute for Theoretical
Physics at the Vienna University of Tech-

nology (VUT) on a more regular basis.
Sudden heart failure prevented his plans
from coming true.

We mourn the loss of a great scien-
tist, of an academic teacher and researcher
of highest calibre, and of a key figure
that helped shaping the scientific profile
and reputation of high energy physics in
Austria. He was appointed full professor
of Theoretical Physics in 1968 as one of
the youngest full professors in Austria and
served in this capacity for 36 years un-
til reaching emeritus status in 2004. His
teaching career began even earlier when
he became university assistant (or assistant
professor) in 1958. Over a period of almost
half a century, interrupted by several re-
search visits abroad, Wolfgang taught theo-
retical physics at the VUT. He received his
diploma in 1958 and his Ph.D. in theoreti-
cal physics in 1960 from VUT.

His desire to specialize in the ‘modern’

topics of high-energy physics and quantum
field theory was, in an ironic twist, partly
motivated as deliberate contrast program to
the dominant research activity of his doc-
toral supervisor and chair of the Theoreti-
cal Physics at the VUT at that time, Walter
Glaser, which was firmly rooted in classi-
cal dynamics. Glaser, who died already in
1960 at the age of 54, did not live to see the
recognition his joint research with his ex-
perimental collaborator and winner of the
1988 Nobel prize Ernst Ruska would even-
tually receive. Glaser’s theoretical contri-
butions to electron beam optics played a
crucial role in the developments of the high
resolution electron microscope, as Ruska
noted in his Nobel lecture.

Wolfgang Kummer received strong
support and tutelage from Walter Thirring,
University of Vienna, who secured for him
a Ford Fellowship and brought him in con-
tact with the high-energy physics com-
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munity. Kummer joined Victor Weisskopf,
then director-general of CERN, as a Ford
Fellow from October 1961 to March 1962.
Weisskopf invited him to come back as a
CERN fellow and his scientific assistant
from 1963 to 1964. Returning to Vienna,
Kummer completed his habilitation (‘ve-
nia legendi’) from VUT in 1965. He be-
came the founding director of the Institute
for High Energy Physics of the Austrian
Academy of Sciences in 1966, which he
led until 1971. His appointment to the sec-
ond chair of Theoretical Physics at VUT
took place during this period, as a result of
which his center of activity gravitated to-
wards his Alma Mater. Among the many
administrative duties he took on during
his tenure were the chairmanship of the
physics department from 1981 to 1987 and
the directorship of the Institute for Theoret-
ical Physics from 1995 until 2003.

Over many years Kummer represented
the Austrian High-Energy Community at
CERN. From 1966 to 1971 he was Austrian
representative at the Council of CERN.
He served as its vice president from 1980
to 1983 and as its president from 1985
to 1987. On December 26, 1985 Wolf-

gang became victim of a terrorist attack
on Vienna airport when he suffered mul-
tiple injuries from hand grenade splinters
and shrapnels. Even though his injuries
were life threatening and he spent eleven
days in intensive care, he quickly recov-
ered and resumed his duty as council presi-
dent within weeks. Kummer also served in
numerous international organizations that
set science policies. Among others, he was
member of the Austrian UNESCO com-
mittee for science from 1975 to 1992 and
Austrian representative at the General As-
sembly of the International Union of pure
and Applied Sciences (IUPAP) from 1996
to 2002. He also was member of the
‘Vorstand’ (Governing Board) of the Er-
win Schrödinger International Institute for
Mathematical Physics, Vienna, founded in
1993. Kummer’s foremost achievement is
undoubtedly the build-up of a strong theo-
retical high-energy physics group covering
a broad range of topics in quantum field
theory and (mainly 2D) quantum gravity.
Kummer made fundamental contributions
to quantum gauge field theory, in particu-
lar by using ghost-free non-covariant gauge
fixing. Since the early 1990’s he mainly
worked on two-dimensional gravity and he

was unceasingly productive well beyond
his official retirement in 2004.

His work received many accolades
and signs of recognition. Among others
he was elected full member of the Aus-
trian Academy of Sciences in 1985. Wolf-
gang was awarded the Schrödinger Prize
in 1988, the Walter Thirring Prize 2000
(together with L. Faddeev). He received
an Honorary Doctorate from the National
Academy of Sciences of the Ukraine in
2005.

Kummer’s contributions to the scien-
tific community at large were by no means
limited to science. He exemplified the role
of an enthusiastic teacher, of an unselfish
and supporting mentor of his younger col-
leagues, and of a colleague of impeccable
integrity. He will be remembered for his
unfailing dedication to the cause of science,
displayed even under adverse conditions of
deteriorating health.

His many friends and close colleagues
are grateful for the time we were privileged
to share with him. Our thoughts are with his
widow, Dr. Lore Kummer who was his sup-
portive companion for almost half a cen-
tury.

Julius Wess 1934 – 2007
Walter Thirring and Bruno Zumino

Julius Wess was an
imaginative, techni-
cally strong and in-
fluential theoretical
physicist. He died
suddenly in Ham-
burg on 8 August at
the age of 72.

Julius, an assistant to Walter Thirring
in Vienna, went on to be a professor first
at Karlsruhe University and then at the
University of Munich, later becoming a
director of the Max Planck Institute for
Physics in Munich. He was an excellent
and friendly teacher and taught many stu-
dents who now have positions in univer-
sities and research institutes. He was also
awarded several honorary doctorates, as
well as physics prizes and medals.

Julius’s scientific work was influenced
strongly by the recognition that the dynam-
ics of quantum field theories is dictated
largely by symmetries. His first pioneering
work was on the consequences of confor-
mal invariance for quantum fields. He then
studied the representations of SU(3) for the
classification of hadrons. This work was
done with Thirring two years before Mur-

ray Gell-Mann and Yuval Ne’eman, but
not with the same representation as in the
“eightfold way”. Instead, it included only
the A-particle in the same representation
as the nucleons; at that time it seemed too
daring to include the other five particles as
well, as their properties seemed to be un-
duly different. Working with Tom Fulton,
Julius went on to formulate an SU(6) the-
ory in an attempt to unify spin and isospin
in agreement with special relativity.

Julius also worked in collaboration
with Bruno Zumino on the mathemati-
cal structure of anomalies in non-Abelian
gauge quantum field theory. This work
showed that anomalies must satisfy a
consistency condition and that they give
rise to interaction terms (usually called
Wess-Zumino terms) which have interest-
ing topological properties. This pioneering
work has had numerous ramifications for
both physics and mathematics.

Julius also wrote a number of papers on
supersymmetry (SUSY) and supergravity
in collaboration with Zumino. This work
shows that there exist 4D, local, relativis-
tic quantum field theories that admit a sym-
metry between Bose and Fermi fields and
that are renormalizable in the conventional
sense. SUSY implies that these theories
are more convergent (for instance, have no
quadratic divergencies) than generic theo-

ries and require fewer renormalization con-
stants. It is possible to formulate SUSY ex-
tensions of the Standard Model (SM) of
particle physics that do not have the diffi-
culties of the conventional SM. These ex-
tensions imply new particles and fields,
which could be found at CERNs LHC,
which is due to start up in 2008. Some of
these theories predict particles (e.g. neu-
tralinos) that are candidates for the dark
matter of the universe.

Julius’s path took him to many places
around the world, and through his lov-
able, unassuming manner and his conta-
gious zest for life, he rapidly made many
friends. We shall all miss him greatly.
(Reprinted from CERN Courier, November
2007.)

Reminiscences of old
Friendships
Email of Bruno Zumino to Walter Thirring

Dear Walter,
As you can imagine, Julius’ death was

a very heavy blow for me. At the ceremony
where we were both awarded the Wigner
prize and medal, Lochlainn O’Raifeartaigh
introduced us as the “terrible twins” be-
cause of our numerous joint successful pa-
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pers. Twins is not the right word, Julius
was twelve years younger than me; I sug-
gested “loving brothers” as more appropri-
ate. Besides the Wigner prize we shared the
Heineman prize and we were both awarded
the Max-Planck-Medal although in differ-
ent years. We also received together the
Humboldt Research Award.

As you know, Julius and I met first
in Vienna during the time I spent there

at your invitation. Our friendship and our
collaboration started there and continued
in many different places, mostly in Karl-
sruhe, which I visited numerous times and
at CERN where I was a staff member and
Julius a frequent visitor.

Of my time in Vienna, I remember with
great pleasure having the opportunity of
meeting Erwin Schroedinger at his house. I
am a great admirer of Schrödinger’s work

and very impressed by the breadth and
the depth of his insights. His influence in
physics and biology has been fantastic. He
was very pleasant and gentle with me dur-
ing my visit with him.

I hope that you are well and send you
my very best wishes. You have always been
a very good friend to me, I have not forgot-
ten it.

Bruno Zumino

In memoriam Julius Wess
5.12.1934, Oberwölz – 8.8.2007, Hamburg
Harald Grosse

It came as a shock when
we learnt that Julius
Wess is not with us any
longer. A great scien-
tist, a very close friend
passed away and we
are left behind with so
many memories of sci-

entific discussions and co-operations and
very personal relations with this extraordi-
nary, deeply human scholar. His scientific
achievements had been acknowledged by
important awards: the Gottfried Wilhelm
Leibniz Prize in 1986, the Max Planck
medal in 1987 and the Wigner medal in
1992 (together with Bruno Zumino).

Julius had already left Vienna at the
time of my own studies at the Institute
of Theoretical Physics. I learnt about his
work on conformal symmetry (which I
was asked at my final exam with Wal-
ter Thirring) from the literature and I
was deeply impressed by his work on the
quark model and on Chiral Effective La-
grangians.

I personally met Julius for the first
time at a conference in Frascati and at the
Schladming Winter Schools in the early
1970s.

Born in the small Alpine village
Oberwölz in Styria in 1934, Wess studied
physics and mathematics at the University
of Vienna. Here he was deeply impressed
(besides his readings of Robert Musil’s
”Mann ohne Eigenschaften”) by two of his
academic teachers, the mathematician Jo-
hann Radon and the theoretical physicist
Hans Thirring. In Vienna he also met his
later wife Waltraud Riediger and a deep
friendship developed. His thesis supervisor
was Hans Thirring and Julius received his
Ph.D. in theoretical physics in 1957.

After having finished his studies, a
one year fellowship allowed him to go
to CERN, where he elaborated on SU(3)

symmetry properties of elementary par-
ticles, cooperating mainly with Markus
Fierz. In 1959 he came back to Vienna as
assistant Professor, where Walter Thirring
had followed his father as chair of the In-
stitute for Theoretical Physics. Here Julius
met Boris Jacobsohn and Bruno Zumino.
In 1960 Zumino invited him to take a po-
sition as a Research Associate at the New
York University. During a subsequent half
year visit at the University of Washing-
ton in Seattle a very close friendship with
the physicists Grace and Lawrence Spruch
started. In the years 1962 to 1966 Julius
came back to Vienna and worked with Tom
Fulton on the question of the unification of
internal and Lorentz symmetry, which was
answered negatively by the work of Sidney
Coleman and Jeffrey Mandula.

In 1966 Wess became associate profes-
sor at the Courant Institute in New York.
During his two years stay at the Courant
Institute from 1966 to 1968 Kurt Symanzik
and Wolfhard Zimmermann gave impres-
sive lectures on quantum field theory, and
his intensive collaboration with Bruno Zu-
mino was continued. In 1968 Wess ac-
cepted an offer for a full professorship at
the University of Karlsruhe, where he spent
more than 20 years. In 1990 he left Karl-
sruhe to become director of the Max Planck
Institute for Physics (Werner-Heisenberg-
Institute) and professor at the Ludwig Max-
imilian University in Munich.

During his time in Karlsruhe he worked
on various symmetry concepts in physics:
together with Callan, Coleman and Zumino
Effective Chiral Lagrangian were devel-
oped; together with Zumino in 1971 he
discovered the anomalous Ward identities
(cited 1735 times since then). Here for
the first time the so called Wess-Zumino
term appears which now plays an impor-
tant role in model building (Wess-Zumino-
Witten model) as well as in conformal field
theory. This term serves up to this day as
a prominent example of more complicated
structures like gerbes and groupoids.

An absolute highlight was created by
Julius and Bruno with their 1973 pa-

per on Supergauge Transformations in
Four Dimensions, which influenced parti-
cle physics considerably and has been cited
(up to now) 1348 times.

Julius was always concerned with sym-
metries. They restrict the dynamics and
yield conserved quantities. In all branches
of physics they help to analyse physical
systems. In 1973 bosonic and fermionic
strings were formulated. Julius and Bruno
deduced from these models space time su-
persymmetry: in nature we have particles
with integer and half-integer spin, bosons
and fermions; they behave differently un-
der rotations and other transformations and
obey different statistics. Electrons, protons
and neutrons are fermions, their statistics
implies for example the stability of matter.
Fermions form the building blocks of mat-
ter, while bosons are the particles which are
responsible for the forces between them.

The proposed supersymmetry allows in
a fantastic manner to map from bosons to
fermions, a transformation which has been
achieved by using so called Grassmann
variables, which square to zero. This en-
largement of variables leads to an extension
of space: besides the space and time coordi-
nate a further part is introduced, which cor-
responds to this new variables. This simple
step has enormous consequences: To each
particle there corresponds an appropriate
superpartner. Nature does not fulfil this rule
at the energies we are fit to measure up to
now.

This beautiful symmetry cures defi-
ciencies of our quantum field theoretical
models.

The masses of the superpartners are
supposed to be high, and therefore they are
not yet observed on earth. But they are ex-
pected to contribute to mass estimates of
particles in the Universe and could explain
missing energy.

It is a bitter irony that Julius no longer
is able to follow the search for these parti-
cles at CERN when the LHC is switched on
in 2008 and starts taking data. If Julius and
Bruno were right with their vision of super-
symmetry we will get a better understand-
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ing of the universe and its composition.
There are extensions of the standard

model of particle physics which are based
on supersymmetry, and furthermore super-
gravity might be a first step towards a for-
mulation of quantized gravity.

Julius’ main activity from 1973 till
1989 concerned Superphysics: keywords
are supergauge transformations, super-
space formulation, supergravity, supersym-
metry breaking, on which he worked
with young collaborators such as Richard
Grimm, Martin Sohnius, Bert Ovrut, Jan
Louis, Jonathan Bagger, Hermann Nicolai
and others. Karlsruhe was a lively center
and I had the pleasure to visit his Institute
several times for a seminar.

His move to Munich in 1989 coin-
cided with a change of subject: in 1991
the first paper with Bruno on his newly
favored subject Noncommutative Quantum
Field Theory was published. The mathe-
matician Manin and others had elaborated
already on quantum spaces, but Julius and
Bruno first formulated a consistent defor-
mation of the quantum hyperplane together
with a differential calculus. After these
first steps, differential calculi, deformed
Lorentz group, respectively Poincaré group
were on the agenda of the Munich
group and studied jointly with Ogievetsky,
Schmidke, Schlieker, Schirrmacher, Brano
Jurco, Stefan Schraml, John Madore,

Harold Steinacker, Peter Schupp, Michael
Wohlgenannt, Paolo Aschieri and Bruno
Zumino.

I had the pleasure to be invited many
times to his institutes at LMU as well as
at MPI. My own work was strongly influ-
enced by Julius; he suggested, for exam-
ple, to use the Seiberg-Witten map in order
to study the question of renormalization of
noncommutative gauge field models.

The Munich group in particular devel-
oped the deformed Standard model, and
again it was Julius who wanted to con-
nect these more abstract developments with
physical predictions: certain decay pro-
cesses are prohibited on classical space, but
only occur on deformed spaces.

Julius was dealing with these exten-
sions of the Standard model on deformed
spaces, in order to improve the situation
with problems of the old one, hoping that
certain features of quantum gravity could
already be taken into account.

The Erwin Schrödinger Institute for
Mathematical Physics, created 14 years
ago, is very grateful to Julius: He was a
member of the committee initiating the in-
stitute, served as a Vice-president of the
Board (‘Vorstand’) of the Institute and was
elected Honorary Member of the ESI in
2002.

We were very happy, when he accepted
our offer of a Senior Research Fellow-
ship at the ESI four years ago. During

his stay in Vienna he suffered a serious
heart attack, from which he recovered as-
tonishingly rapidly. When I visited him in
the hospital his fist question concerned the
LHC measurements. On the very next day
he gave me two sheets sketching the first
steps towards deformed Einstein gravity,
which he then elaborated further together
with Branislav Jurco, Peter Schupp and
Paolo Aschieri when he returned to Mu-
nich.

In his own words: “We are in an ideal
situation: from general ideas about the
structure of as fundamental a concept as
space-time we are led to a physical theory
that can be tested experimentally.”

Besides his scientific activities Julius
started an East European Initiative in or-
der to help these countries to keep up with
the rapid developments. By chance, I was
on a German committee which supported
this initiative. A number of Workshops and
Schools as well as a number of visits of
physicists from former Jugoslavia were ini-
tiated by this exchange program.

After his retirement in Munich Julius
moved to Hamburg. I was happy that two
of his collaborators (Harold Steinacker and
Michael Wohlgenannt) joined me in Vi-
enna and became my collaborators.

We lost an eminent physicist, I lost an
elder friend.

We will miss you, Julius.

Entanglement in many-body quantum
physics
Frank Verstraete

One of the defining events in physics during
the last decade has been the spectacular ad-
vance made in the field of strongly correlated
quantum many body systems: the observation
of quantum phase transitions in optical lat-
tices and the realization that many-body en-
tanglement can be exploited to build quantum
computers are only two of the notable break-

throughs. In a remarkable turn of events, the tools developed in
the context of quantum information science have been shown to
shed a new light on the ones used to describe strongly corre-
lated quantum many-body systems as studied in a wide variety
of fields and has opened up many exciting interdisciplinary re-
search avenues involving mathematical physics, condensed matter
and atomic physics, and information and computational complex-
ity theory.

The key ingredient that distinguishes the quantum from the
classical world is the concept of entanglement. As a response to
the Einstein-Podolsky-Rosen paper in 19351, Schrödinger coined
the concept of entanglement2 and recognized it as being the defin-
ing characteristic of quantum mechanics. In the early-days of

quantum mechanics however, people were too busy with the many
successful applications of quantum mechanics to really pay at-
tention to such foundational issues. Things changed drastically
in the 60’s when John Bell, working as a high energy physicist
in CERN, made the discovery that many-particle quantum states
can in principle exhibit correlations that are stronger than corre-
lations allowed for by local hidden variable models3. Although a
loophole-free Bell experiment has still not been performed, Bell’s
work anticipated the fascinating quest to contrast the power of
quantum versus classical information processing and was one of
the main catalysts for the exceptional progress made in experi-
mental quantum optics during the last decades. As a next logical
step, visionary people like D. Deutsch, C. Bennett and P. Shor
understood that entanglement can be exploited to do information
tasks such as computing and cryptography much more efficiently
than possible in a classical world. The current effort in the field
of quantum information science is aimed at realizing these ideas.
The question to contrast the power of classical to quantum infor-
mation processing, and most notably to understand the power of
quantum computers that explicitly make use of the possibility of
quantum interference and the quantum superposition principle, led
to an explosion of work on entanglement theory. One motivation is
that this might lead to the discovery of new quantum algorithms by
which quantum computers can solve computational problems that
are believed to be intractable on classical computers; the most in-
teresting algorithms that have as of today been proposed are Shor’s
algorithm for factoring large numbers (which turns out to be very
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relevant in the construction of one-way functions in cryptography)
and algorithms for simulating the dynamics of many-body inter-
acting quantum systems (originally proposed by Feynman).

How do you define entanglement? In the words of
Schrödinger, a pure quantum state is entangled if and only if the
whole is more than the sum of its parts. More specifically, the
Hilbert space of a many-body system (where many is to be un-
derstood as largerthan 1) is a tensor product of the ones describing
single particles (those can correspond to e.g. modes in Fock space,
to localized spins, to the polorization of a photon, ...). A pure quan-
tum state is called separable if and only if the global wavefunction
is a product of such single-particle wavefunctions, and entangled
otherwise; a mixed quantum state is called entangled iff it cannot
be written as a convex sum of pure separable states. Note that the
possibility of entanglement is nothing more than a direct conse-
quence of the superposition principle. Note also that the notion
of entanglement strongly depends on the choice of local Hilbert
spaces: a Slater determinant is considered unentangled with rela-
tion to its normal mode decomposition, but can be highly entan-
gled from the local point of view if these modes are delocalized.

A lot of work has been done to quantify entanglement. In the
case of a bipartite (i.e. 2-particle) pure quantum system |ψAB〉, the
natural measure of entanglement is the von-Neumann entropy of
the local reduced density operator ρA or ρB4:

S(|ψAB〉) = −TrρA log2(ρA) = −TrρB log2(ρB).

In essence, this entanglement entropy quantifies the maximal
amount of Shannon information thatA can obtain by doing a mea-
surement on his part about the measurement outcome of part B.
An entropic criterion is desirable as the amount of entanglement
becomes additive for independent copies, but there is also a deeper
reason why this measure is used: it can be proven that any collec-
tion of states with a given mean entanglement can be intercon-
verted into any other collection of states with the same mean en-
tropy by only local operations and classical communication5. In
essence, this means that systems with the same amount of entan-
glement are equally useful for distributed quantum information
tasks such as quantum communication, and the entanglement en-
tropy is therefore the unique measure that quantifies how useful
entanglement is from the local point of view. Actually, it is pos-
sible to make a formal analogy between the theory of pure state
entanglement and thermodynamics, in which local operations and
classical operations that preserve the entanglement correspond to
adiabatic processes in thermodynamics.

Entanglement appears everywhere in quantum mechanical
systems, and there are many complementary viewpoints on it.
From the point of view of quantum information theory, it is a
resource that allows for revolutionary information theoretic tasks
such as quantum computation and quantum cryptography (without
entanglement, a quantum computer would not be more powerful
than a classical one). From the point of view of quantum many-
body physics, entanglement gives rise to quantum phase transi-
tions and exotic new phases of matter exhibiting e.g. topological
quantum order (i.e. a nonlocal order parameter) such as occurring
in the fractional quantum Hall effect. From the point of view of
the numerical simulation of strongly correlated quantum systems
such as quantum spin systems and also appearing in computational
quantum chemistry, entanglement is the enemy number one as it
makes simulation so hard. Of course, these viewpoints are mutu-
ally compatible: the complexity of simulating entangled quantum
systems is intimately connected to the power of quantum compu-
tation; the possibility of topological quantum order turns out to be

strongly related to the notion of quantum error correction. It is this
interplay between those complementary viewpoints that makes the
study of entanglement such a rich subject.

Recently, there has been much interest in investigating the
amount and type of entanglement that is naturally present in
strongly correlated quantum systems. On the one hand, this was
motivated by the question of whether the amount and type of en-
tanglement needed to do quantum computation could be present in
the ground-state wave functions of quantum spin systems. On the
other hand, the hope is that the study of entanglement in strongly
correlated quantum systems could elucidate the underlying struc-
ture of the associated wavefunctions, which on its turn might lead
to new ways of simulating them.

Concerning the first question, a local 5-body quantum spin
1/2 (qubit) Hamiltonian on a square lattice was identified whose
ground state is a so–called cluster state and allows for any (i.e. uni-
versal) quantum computation by doing adaptive local single-qubit
measurements on it6. This was a surprising result as it showed that
ground states of local 2-D quantum spin models contain enough
entanglement for doing universal quantum computation (note that
local one-qubit operations can never create entanglement). The as-
sociated Hamiltonian is unusual for a quantum Hamiltonian as
it consists of a sum of local commuting terms; this means e.g.
that local perturbations will never spread by virtue of Hamilto-
nian evolution. It turns out that these cluster states and the way
to do quantum computation with them can be understood within
the formalism of valence bond states or projected entangled pair
states (PEPS)7. This class of states plays also a central role in the
context of simulation of quantum spin systems, and we will later
come back to them.

Concerning the question about the nature of entanglement in
many-body systems, we would like to get a better understanding
on the nature of the wavefunctions present in ground states of
strongly correlated quantum systems. The study of correlations,
both quantum and classical, is an very rich field and lies at the
heart of many of the most exciting discoveries in the fields of sta-
tistical physics and quantum information theory: quantum phase
transitions occur due to the appearance of long-range correlations,
and the theory of entanglement is all about quantifying the amount
of quantum correlations and might lead to a better understanding
of the emergence of collective phenomena. The natural choice to
quantify correlations in a quantum spin system endowed with a
metric is to look at the connected correlation functions

〈OAOB〉 − 〈OA〉〈OB〉

as a function of the distance between two regions A and B. Non-
critical systems exhibit exponentially decaying correlation func-
tions, leading to the definition of a correlations length. Despite the
basic nature of this result, it has only been proven very recently8;
the main technical ingredient for that proof was the use of the so-
called Lieb-Robinson bound on the velocity by which correlations
spread with respect to local Hamiltonian evolution9. The notion of
a correlation length is very fundamental and quantifies the amount
of degree of localization of the relevant degrees of freedom in the
system. Intuitively, the notion of a correlation length should set
the length scale at which ”the whole becomes equal to the sum
of its parts”; in other words, if the distance between A and B be-
comes much longer than the correlation length, we should have
ρAB ' ρA ⊗ ρB . However, just looking at 2-point correlation
functions can be problematic: there exist quantum states ρAB for
which all two-point correlation functions are arbitrarily small, and
nevertheless they can be proven to be arbitrarily far from product
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states10.
In the case of zero-temperature quantum systems, another ob-

vious choice for quantifying the amount of correlations is to calcu-
late the entanglement entropy of a region A of spins as a function
of the size and shape of the region (see Figure 1 below). This turns
out to be interesting as it will lead to useful insights into the nature
of the associated wavefunctions. It has been conjectured that the
entanglement entropy for noncritical systems obeys an area law,
i.e. scales as the size of the boundary |∂A|, indicating that the only
correlations that are relevant are the ones around that boundary11.
It has been shown that this area law is violated mildly for critical
one-dimensional quantum spin and critical two-dimensional free
fermionic systems, for which a multiplicative logarithmic correc-
tion has to be added12

S(ρA) ' |∂A| log(|∂A|).

A

B

A

B

FIGURE 1. A QUANTUM SPIN SYSTEM ON A LATTICE: THE LATTICE IS DIVIDED INTO

REGIONS A AND B WITH BORDERS ∂A AND ∂B, RESPECTIVELY. IN THE CASE OF

GROUND STATES OF LOCAL HAMILTONIANS, THE ENTANGLEMENT ENTROPY BETWEEN

THE REGIONS A AND B SCALES LIKE THE AREA ∂A, AS OPPOSED TO THE VOLUME |A|.

However, there are also critical quantum spin systems known
in 2 dimensions for which a strict area law holds13, and hence it
is in general an open question of how to relate area laws to the
notion of a correlation length.

The situation is much clearer in the case of finite temperature
systems in thermal equilibrium. In that case, correlations can be
quantified by using the concept of mutual information:

I(A : B) = S(ρA) + S(ρB)− S(ρAB).

The mutual information is zero if and only if the state is a product
state ρA⊗ ρB and has the same operational meaning as the entan-
glement entropy (actually, it is equal to twice the entanglement en-
tropy for a pure state). Very recently, a bound on this mutual infor-
mation, valid both for classical and quantum thermal states of local
Hamiltonians of the form ρAB = exp(−βH)/Tr exp(−βH), has
been derived14. The argument works equally well for spin systems,
for systems with infinite dimensional local Hilbert spaces such as
bosons, and for fermionic systems. The proof is short enough to
reproduce here. Consider two regions A and B, and write H as
a sum of 3 terms HA, HB , H∂ ; HA, HB contains the terms of
the Hamiltonian that acting only on A, B, and H∂ contains the
terms that represent the interactions between across the boundary.
Thermal states are variationally characterized by the fact that they
minimize the free energy; hence, any other state has a higher free
energy, and in particular ρA ⊗ ρB (here, ρA, ρB are the reduced
density operators of the global thermal state ρAB). We hence have:

Tr (HρAB)− TS(ρAB) ≤ Tr (HρA ⊗ ρB)− TS(ρA ⊗ ρB)

which is equivalent to

I(A : B) ≤ 1
T

Tr (H∂ρA ⊗ ρB) ≤ ‖H∂‖
T

.

The right hand side obviously scales like the boundary of re-
gion A as opposed to its volume, and this proves that any clas-
sical and quantum thermal state exhibits an exact area law at any
non-zero temperature, even in the critical case. An intriguing open
problem is to connect this behaviour to the zero-temperature be-
haviour where logarithmic corrections arise in the case of critical
quantum spin chains.

Those are laws prove that correlations are mainly concentrated
around the boundary and the entanglement entropy of a block
of spins scales like its boundary as opposed to its volume. That
means that there is very little entanglement in ground states of lo-
cal quantum Hamiltonians: all ground states live on a small man-
ifold in Hilbert space with relatively few entanglement. This can
been exploited to come up with a variational class of wavefunc-
tions that captures this behaviour and is still easy to simulate, and
this has precisely been the program that has been successfully pur-
sued during the last years.

In the case of 1-dimensional quantum spin systems, power-
ful numerical renormalization group (NRG) algorithms have been
devised in the 70’s by Wilson15; those methods were later gener-
alized to the density matrix renormalization group (DMRG) by S.
White which allows to simulate ground state properties of any spin
chain16. Both of those methods have been extremely successful
and allow to calculate correlation functions of the related systems
up to very large precision. Only recently, it has become clear that
both of those renormalization algorithms can be rephrased as vari-
ational methods within the class of so-called matrix product states
(MPS)17. The class of MPS is very much related to the valence-
bond AKLT models put forward by Affleck, Kennedy, Lieb and
Tasaki18 and the generalizations thereof known as finitely corre-
lated states19. MPS can also be generalized to so-called projected
entangled pair states (PEPS) which can be defined on any lattice
in any dimensions20.

D

i

ii
1

d D

kji

ijk kjicP
1 1,,

FIGURE 2. A PEPS CAN BE DEFINED ON ANY LATTICE; THE SMALL CIRCLES

CORRESPOND TO VIRTUAL D-DIMENSIONAL SPINS, AND THE MAP P MAPS THEM TO A

PHYSICAL SPIN OF DIMENSION d REPRESENTED BY THE BIGGER ELLIPSOIDS.

How can we represent those MPS and PEPS? First of all, con-
sider a graph where the local d-dimensional spins lie on the nodes
of the graph, and a collection of virtual bipartite entangled EPR-
pairs

∑D
i=1 |i〉|i〉 distributed along all vertices of the graph (see

figure 2). Next, we want to identify a local subspace of those vir-
tual spins as the space of physical spins by applying a linear map
P to them that maps c spins (c being the coordination number
of the graph) to one (physical) spin of dimension d. The class
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of PEPS is now obtained by letting those projectors P vary over
all possible Dc × d matrices. The AKLT-state is of that form, in
which 2 qubits are mapped to a spin 1 state in the case of the 1-
dimensional spin chain and 3 qubits to a spin 3/2 state in the case
of a hexagonal lattice. The cluster state discussed earlier is also of
that form, and the quantum computation going on when doing lo-
cal measurements can be understood by identifying the underlying
virtual qubits as the logical qubits21. In the case of a 1-dimensional
structure, this family of states are called Matrix Product States
(MPS), and a useful aspect of them is that all correlation functions
can be calculated with a computational cost that scales linearly in
the number of spins and polynomially in D. This is remarkable,
as the dimension of the Hilbert space scales exponentially in the
number of spins, and hence the class of MPS forms a subclass for
which we can calculate all properties efficiently.

By making use of entanglement theory, it has recently be-
come clear why the numerical renormalization group methods are
so successful: this is a consequence of the fact that this class of
MPS is rich enough to approximate any ground state of a local
gapped Hamiltonian efficiently. This implies that the manifold of
ground states of all local gapped one-dimensional Hamiltonians:
their ground states are well approximated by MPS, and conversely
all MPS are guaranteed to be ground states of local Hamiltoni-
ans. Similar statements hold for PEPS in higher dimensions. To
be more precise, let’s define what we mean by good approxima-
tions. Consider a family of Hamiltonians HN =

∑N−1
i=1 hi,i+1

parameterized by the number of spins N and nearest neigbour in-
teractions hi,i+1, and associated ground states |ψN 〉. The goal is
to approximate the ground states |ψN 〉 by a family of MPS |ψDN 〉
such that

‖|ψN 〉 − |ψDN 〉‖ ≤ ε

with ε independent of N . The central question is: how does D
has to scale as a function of 1/ε and N such that this relation is
fulfilled? If the scaling of D is polynomial in 1/ε and N , then it
means that the ground state is represented efficiently by a MPS:
indeed, the previous equation implies that the expectation value
of any observable on the exact ground state is arbitrary close to
the one of the MPS, that the cost of getting a better precision does
only scales polynomial22, and that all correlation functions can be
calculated efficiently on |ψDN 〉.

The previous requirements can be met under pretty broad as-
sumptions. First of all, it has been proven that whenever an area
law is satisfied for the exact ground state, a MPS will indeed ex-
ist that approximates it well with polynomial scaling in 1/ε,N
23. This argument works whenever the Renyi entropy Sα(ρ) =
Tr(ρα)/(1 − α) for an α < 1 of a contiguous block of spins is
bounded above by a constant times the logarithm of the size of the
block. This turns out to be true for all spin chains for which this
quantity has been calculated exactly, including the critical Heisen-
berg spin chain and the Ising Hamiltonian in a transverse magnetic
field. In a related recent development, it has been proven that all
gapped local Hamiltonians on a spin chain obey a strict area law
in terms of the Renyi entropies24, implying the approximability
by MPS. The central technical tool used in the proof is again the
Lieb-Robinson bound25. This provides a clear theoretical justifi-
cation for the numerical renormalization group methods: they are
variational methods over a class of states that is rich enough to
provide an very good approximation to the exact ground states26.
The reformulation of those methods in terms of matrix product
states have opened up many new exciting possibilities and allowed
for new applications such as simulating spin chains at e.g. finite
temperature and out of equilibrium, to calculate gaps in quantum

spin systems, and most importantly to extend the formalism of
numerical renormalization group methods to higher dimensions.
These methods, especially the ones in 2 dimensions, are still in
development, but it has become clear that they offer crucial new
insights into the structure of the wavefunctions to be found in
nature. Although originally formulated on the level of quantum
spin systems, it has become clear that they can also be used in the
broader context of bosons, fermions and field theories. Consider
e.g. fermionic lattice spin systems. This is of particular interest
as the identification of the phase diagram for the 2-dimensional
Hubbard model is one of the central problems in condensed mat-
ter theory. Motivated by those new developments on MPS/PEPS,
it has been proven that local Hamiltonians of fermions can always
be mapped to local Hamiltonians of spins27, independent of the di-
mension, and therefore the whole formalism of PEPS turns out to
be equally applicable to fermionic lattice systems. Those methods
can equally well be used to simulate quantum lattice field theo-
ries, non-equilibrium systems, classical spin systems, and work is
under way to tackle problems in quantum chemistry.

In conclusion, we have argued that entanglement theory pro-
vides fundamental new insights into the nature of strongly corre-
lated quantum spin systems. It turns out that the amount of en-
tanglement in ground states of quantum spin systems is surpris-
ingly low. Under pretty general assumptions, this has allowed us
to identify the manifold of wavefunctions associated to the low-
energy sector of strongly correlated quantum spin systems, which
on its turn can be applied to devise powerful ab initio numerical
variational methods for simulating them.
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Kazhdan’s Property (T)
Pierre de la Harpe

Property (T) is a rigid-
ity property first for-
mulated by D. Kazh-
dan in a three page
1967 paper whose in-
fluence has been, and
still is, immense.

The first success
of Kazhdan’s ideas was to provide a very
smart solution to an old problem (going
back at least to Siegel) concerning finite
generation of lattices and vanishing of Betti
numbers of Riemannian symmetric spaces.

Recall that a lattice in a locally com-
pact group G is a discrete subgroup Γ such
that the homogeneous space G/Γ has a G–
invariant probability measure. For exam-
ple, the classical subject of positive def-
inite quadratic forms on Rn leads to the
lattice SLn(Z) in the simple Lie group
SLn(R), as well as to the locally sym-
metric spaces SO(n) \ SL(n,R)/Γ, for
appropriate finite index subgroups Γ of
SLn(Z). Other quadratic forms and other
arithmetic subjects (such as division alge-
bras) lead to other lattices in other classi-
cal Lie groups, and more generally in re-
ductive groups over local fields. A lattice
Γ in G is uniform if G/Γ is compact; it
is then a straightforward consequence of
standard facts from general topology that Γ
is finitely generated. But the finite genera-
tion of non–uniform lattices in semi-simple
groups is a rather deep result (even if some
particular examples such as SLn(Z) can
be shown to be finitely generated by sim-
ple methods). It is also a crucial step for
later results of the theory, such as Margulis’
arithmeticity theorems.

Using methods of a completely differ-
ent nature of those which were used be-
fore, Kazhdan proved in an extremely short
way that any lattice in G is finitely gen-
erated when G = G1 × · · · × Gk is a
product of simple Lie groups Gj of real
ranks at least 2. The real rank of Gj is
the maximal dimension of subgroups R`

of Gj which are diagonalisable in the ad-
joint representation; for example the real
rank of SLn(R) is n − 1. Kazhdan also

proved that the first Betti number of the lo-
cally symmetric space K \ G/Γ is zero,
where K is a maximal compact subgroup
of G. (Lattices in groups of real rank one
would require another discussion.) The fi-
nite generation result holds for lattices in
semi–simple groups G of higher ranks de-
fined over other local fields, for example
for lattices in SLn(k((T ))), where n ≥ 3
and k((T ))) is the field of Laurent series
over a finite field k.

The main ingredient of Kazhdan’s ap-
proach is the theory of unitary representa-
tions of groups (more precisely a small and
soft part of the theory). Consider a topolog-
ical group G, a Hilbert space H, the group
U(H) of its unitary operators, and a rep-
resentation π : G −→ U(H) such that
the companion mapping G × H −→ H
is continuous. We say that π has invariant
vectors if there exists ξ 6= 0 in H such
that π(g)ξ = ξ for all g ∈ G, and that
π almost has invariant vectors if, for any
compact subset Q of G and any ε > 0,
there exists a unit vector ξ ∈ H such that
supg∈Q ‖π(g)ξ − ξ‖ < ε. For example,
the reader can check that the representation
of the additive group R by translations of
L2(R) almost has invariant vectors with-
out having invariant vectors.

A topological group G has Kazhdan’s
Property (T) if any unitary representation
ofG which almost has invariant vectors ac-
tually has invariant vectors. It is straight-
forward to check that compact groups have
this property. The example above shows
that R does not have it; similarly, locally
compact groups which are abelian and
non–compact (or more generally amenable
and non–compact) as well as non–abelian
free groups do not have Property (T). Here
are remarkable results, essentially all from
Kazhdan’s original paper:

(i) The special linear groups SLn(K),
n ≥ 3, and the symplectic group
Sp2n(K), n ≥ 2 have Property (T)
for any local field K (for example
K = R). It follows that G = G1 ×
· · · ×Gk as above has Property (T).

(ii) A lattice Γ in a locally compact
group G has Property (T) if and only
if the group G has it.

(iii) If a locally compact group G
has Property (T), then G is com-
pactly generated and G/[G,G] is
compact. In particular, a countable
group Γ which has Property (T) is
finitely generated and its abelianisa-
tion Γ/[Γ,Γ] is finite.

Once again, it follows that lattices as de-
scribed above are finitely generated and
that locally symmetric spaces X = Γ \
G/K with the appropriate condition on
ranks have finitely generated fundamen-
tal group π1(X) and first Betti number
dim(H1(X,R)) = 0.

Property (T) was later recognized to be
equivalent to a fixed–point property (De-
lorme, Guichardet, Serre). More precisely,
let G be a locally compact group which is
σ–compact; then G has Property (T) if and
only if G has the so–called Property (FH),
namely if and only if any continuous action
of G by affine isometries of a real Hilbert
space has a fixed point. On the one hand,
this indicates a very strong relevance of
the notion for geometry; on the other hand,
the cohomological formulation of this fixed
point property, namely H1(G, π) = 0 for
any orthogonal representation π of G, has
proved to be useful.

The rigidity contained in Property (T)
has important applications in combina-
torics which go back to a short paper of
Margulis (1973). Let Γ be a group gen-
erated by a finite set S; assume that Γ
has Property (T) and in addition has an
infinite family (Γk)k of subgroups of fi-
nite index (for example SL3(Z), with the
kernels of the reductions SL3(Z) −→
SL3(Z/pkZ) modulo pk). Let Xk denote
the Cayley graph of the quotient Qk =
Γ/Γk with respect to the image Sk of S,
namely the graph with vertex set Qk in
which q and q′ are connected by an edge
whenever q−1q′ is in Sk ∪ S−1

k . Then
(Xk)k is a sequence of expanders, namely
a sequence of regular finite graphs which
have remarkable properties from the point
of view of geometry (isoperimetric con-
stants), spectral theory (uniform bounds on
the non trivial eigenvalues of the corre-
sponding simple random walks), and all
kinds of applications in computer science
(networks of computations, data organisa-
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tions, computational devices, and so on).
These ideas have had a very rich poster-
ity, including quite recent work concern-
ing graphs defined from infinite sequences
of finite groups, and more generally con-
cerning the combinatorics of finite simple
groups (Alon, Bourgain, Gamburd, Kass-
abov, Lubotzky, Nikolov, Shalom, Wigder-
son, . . . ).

Techniques from Kazhdan’s paper,
closely dependent on the theory of
semisimple groups, provided only count-
ably many examples of countable groups
with Property (T). But many more exam-
ples have been later discovered, indeed un-
countably many. In particular, Property (T)
plays an important role in the theory of
“generic groups” and “random groups”
(Gromov).

In fact, Kazhdan’s insight has turned
out to be relevant in a large family of sub-
jects. It has provided the solution to prob-
lems about the existence of finitely additive
invariant measures going back to Lebesgue
and Ruziewicz (Margulis, Rosenblatt, Sul-
livan, Drinfeld). In ergodic theory, ergodic
actions of groups with Property (T) have
been shown to be more rigid than a pri-
ori expected (Schmidt, Connes, Weiss), and
the notion is presently most important for
the understanding of equivalence relations
(Zimmer, Furman, Hjorth). Property (T)
has appropriate formulations in operator
algebras (Connes, Jones, Popa, Bekka),
where it has provided the key ingredient
to solve several problems, one going back
to Murray and von Neumann themselves:
the existence of factors with fundamental

groups reduced to one element (Popa). The
notion has also found its way in random
walks, spectral theory, the theory of al-
gorithms, . . . , and we should probably be
open for more surprising applications.

To come back to the main theme at
ESI during the spring of 2007, it is strik-
ing that amenability and Property (T) are
the two extreme poles of a whole range
of behaviours. For example, if we restrict
for simplicity the next statement to locally
compact groups, a group with Property (T)
is amenable if and only if it is compact;
non–compact groups which have proper-
ties “in between” amenability and (T) are in
some sense the most mysterious, but what
we know of the two extreme types of be-
haviour is often a good guide for a better
understanding of the general situation.

Perturbative Quantum
Field Theory:
Still Surprises?
Romeo Brunetti

Quantum Field The-
ory aims at a unify-
ing description of na-
ture on the basis of the
principles of quantum
physics and (classical)
field theory. Its main
success is the develop-
ment of a standard model for the the-
ory of elementary particles which describes
physics between the atomic scale and the
highest energies which can be reached
in present experiments. It has, however,
turned out to be also very important in
other branches of physics, in particular for
solid state physics. Its mathematical com-
plexity is enormous and has induced many
new developments in pure mathematics. In
its original formulation it was plagued by
divergencies whose removal by renormal-
ization lead to fantastically precise predic-
tions which could be verified experimen-
tally.

A full construction of quantum field
theories was possible up to now only for
particular models and in too specific situ-
ations. For realistic models one still has to
rely on uncontrollable approximations un-
der which perturbation theory, which con-
structs the models as formal power series in
the coupling constants, is the most impor-
tant one.

Perturbation theory in quantum field

theory has been developed as a rigor-
ous mathematical framework in the fifties-
sixties thanks to the work of Hepp,
Lehmann, Symanzik, Zimmermann, Stein-
mann, Epstein, Glaser, Stora, Bogoliubov,
Stückelberg and several others. These au-
thors found a mathematically consistent
method to construct the perturbation se-
ries of quantum field theory at all orders,
thereby making mathematical sense of the
recipes for renormalizations suggested be-
fore.

More recently, we experienced a re-
newed interest in the foundations of per-
turbation theory, which may come as a
surprise. Two independent directions were
traced. The first took place around 1996,
due to Brunetti and Fredenhagen1, and was
centered around the problem of construct-
ing quantum field theories on curved space-
times. The other started around the end
of the nineties and is due to Connes and
Kreimer2 and deals with structural insights
into the combinatorics of Feynman graphs
via Hopf algebras. In both cases there arise
direct connections to the application of
quantum field theory to physics problems.
The two settings gave a lot of striking re-
sults and applications that were unforeseen
before. In particular, new aspects of the
renormalization group were uncovered.

In the following we summarize the
highlights of the two mentioned routes:

1. Hopf algebras and renormalization

An important progress in the connec-
tion to mathematics has been obtained re-
cently by Connes and Kreimer3. Their idea
of using Hopf algebras in perturbation the-
ory has led to a better mathematical under-
standing of the forest formula in momen-

tum space. Kreimer’s original insight orig-
inated from a study of number-theoretic
properties of Feynman integrals and related
the amplitudes term by term in the per-
turbative expansion to polylogarithms and
motivic theory as well as, ultimately, to
arithmetic geometry.

It turns out that Feynman graphs carry
a pre-Lie algebra structure in a natural
manner. Antisymmetrizing this pre-Lie al-
gebra delivers a Lie algebra, which pro-
vides a universal enveloping algebra whose
dual is a graded commutative Hopf algebra.
It has a recursive coproduct which agrees
with the Bogoliubov recursion in renormal-
ization theory. While this gives a mathe-
matical framework to perturbation theory
in momentum space Feynman integrals, it
also suggests to incorporate notions of per-
turbative quantum field theory into mathe-
matics.

Indeed, very similar Hopf algebras
have emerged in mathematics in the study
of motivic theory and the polylogarithm
through the works of Spencer Bloch, Pierre
Deligne, Sasha Goncharov and Don Za-
gier. One ultimately hopes that a link can
be established between number theory and
quantum field theory in studying the rele-
vant Hopf algebras and their relation in de-
tail.

A major problem here is the under-
standing of the quantum equations of mo-
tion, which are governed by the closed
Hochschild one-cocycles of the Hopf alge-
bra.

This Hochschild cohomology of per-
turbation theory illuminates the role of lo-
cality in momentum and coordinate space
approaches. At the same time, it provides
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a crucial input into the function theory of
the polylogarithms, and certainly into a yet
to be developed function theory of quan-
tum field theory amplitudes. Extensions of
these ideas to gauge theories are under ac-
tive investigation, as well as the connection
to motivic theory.

At the same time, Connes and Mar-
colli4 are incorporating the techniques of
arithmetic geometry into quantum field
theories, which utilize again the underlying
Hopf structure in the context of Tannakian
categories, intimately connected again to
the theory of the polylogarithm.

2. Epstein-Glaser perturbative ap-
proach.

Another important direction of recent
research has been put forward by Brunetti
and Fredenhagen5 and refined by Hollands
and Wald in a series of papers6. The local
point of view is emphasized, via a general-
ization of the Epstein and Glaser approach,
and allows a description of perturbation
theory on any background spacetime. Basic
to this approach is the connection with the
field of microlocal analysis pioneered by
Radzikowski. These methods allowed the
cited authors to prove for the first time, that
up to possible additional invariant terms
of the metric, the classification of (ultra-
violet) renormalization in a general space-
time follows the same rules as that on
Minkowski spacetime. Actually the theory
suggests further possibilities, as envisaged
recently by Brunetti and Fredenhagen7, the
most important of which is a conceptu-
ally new approach to quantum gravity, at
least in the perturbative sense. In this di-
rection it is particularly important to cite
that in a very recent effort, Brunetti, Dütsch
and Fredenhagen, enlarged the mathemati-
cal framework a lot, by allowing also non
polynomial interactions, and better clarify-
ing the algebraic structures used in the local
approach.

Other interesting directions are that
taken by Dütsch and Rehren8 for perturba-
tion theory on AdS and connections with
the quantum field theory perspectives on
holography, and, more recently, Hollands
has developed a new attack to the case of
local and covariant pure gauge theory. The
results are rather appealing and points to-
wards a better understanding of the (redun-
dant) mathematical structures of gauge the-
ories.

One expects that using all these new ex-
citing developments will be possible to ad-
dress fundamental problems in cosmology,
for instance, but this is still to be done.

3. Comparison and other results

At present a throughout comparison be-
tween the Hopf algebraic and the local ap-
proaches to perturbation is unfortunately
lacking. The two framework use very dif-
ferent languages and structures and it is a
challenge to see to what extent they carry
the same information on the renormaliza-
tion procedure. An ongoing collaboration
between Bergbauer, Brunetti and Kreimer,
is based on the realization that the renor-
malization procedure, similarly to what is
done in the local approach, e.g. as exten-
sions of n-point distributions from Mn \
∪nk=2∆k to the full space, can also be dis-
cussed using certain tools in algebraic ge-
ometry, namely Fulton-MacPherson com-
pactification. The hope is that this last may
shed some light on the connection since
the procedure of compactification embod-
ies the Hopf algebraic combinatorics. Once
established this would provide a link from
the Hopf algebraic setting to the local one.
Establishing a link from the local approach
to the Hopf algebras may turn out to be
more entertaining.

Another important point of contact is
that renormalization group ideas seem to
be crucial in both approaches. Other groups
have pioneered different ideas, for instance
by making rigorous the work of Polchin-
ski and Wilson9. However, a connection
between all these seemingly different per-
spectives is lacking and an important is-
sue would be a comparison and attempt
to find a possible unification. A first step
in this direction was done by Krajewski
and collaborators10. He showed how to
use tree-like expansions and the universal
Hopf algebra of rooted trees to reformulate
the Wilson-Polchinski approach. In the lo-
cal approach this connection has been re-
cently discussed by Brunetti, Dütsch and
Fredenhagen. There, one is able to use
the Epstein-Glaser approach to discuss
and compare different ideas of renormal-
ization groups, namely, those related to
Stückelberg-Petermann, to Gell-Mann and
Low, and to Wilson-Polchinski, at least in
the Minkowskian case. Here, one discov-
ers that the Stückelberg-Petermann is re-
ally a group of analytic automorphisms of
the local observables, that the Gell-Mann
and Low approach to scaling gives only
a cocycle, which is a group only in the
massless case, and for the first time a di-
rect derivation of the Flow Equation of
Polchinski in the Minkowskian case. A ma-
jor improvement may come from the last
approach if one would be able to find a lo-
cal and covariant way to impose a cut-off in

the generic Lorentzian case, something that
might be extremely useful in a direct attack
to the perturbative Quantum Gravity.

To summarize, Perturbative Quantum
Field Theory seems still extremely alive,
full of new and appealing ideas that may
well provide further physical insights and
unforeseen connections to many partly un-
explored areas of mathematics. We are con-
fident that even more surprises are coming.
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The Interaction of
Mathematics and Physics at
the Turn of the twentieth
Century — a Series of
Lectures
Joachim Schwermer

The emergence of mathematical physics as
an independent discipline at the end of the
19th century brought with it profound dis-
cussions of the foundations of both math-
ematics and physics as well as a fruitful
cooperation between these two fields. Far-
reaching concepts of modern physics and
new, fundamental mathematical structures
were constructed in this period. Since sum-
mer 2005 a series of lectures, entitled “His-
tory of Mathematics and Physics”, at the
ESI drew attention to this topic area. The
talks as given in this series in the previ-
ous years have found broad interest among
students, researchers and scholars and initi-
ated a new awareness of the historical con-
text that goes along with the sciences in
question.

This is to announce two lectures in this
series during the Winter Term 2007/08.

The first lecture is by Professor Dr.
Moritz Epple (University of Frankfurt) on
the topic Beyond Metaphysics and Intu-
ition: Felix Hausdorff’s Views on Geom-

etry, on Wednesday, December 12, 2007,
18:00, ESI Schrödinger Lecture Hall.

Abstract: The mathematician Felix
Hausdorff, who also published literary and
philosophical writings under the name of
Paul Mongre, was a singular figure in
fin-de-sicle and early 20th century math-
ematical culture. His intellectual career
brought together seemingly distant cultural
trends such as Nietzscheanism and mod-
ernist, ’abstract’ mathematics. In my talk
I will try to sketch some of Hausdorff’s
considerations on time, space, and geom-
etry, topics that he approached both as a
philosopher and writer, and as a mathe-
matician.

It will be seen that philosophical rather
than mathematical considerations brought
Felix Hausdorff to reflections on geome-
try and the nature of time and space in
the late 1890’s. Rejecting all contempo-
rary attempts to sketch metaphysical or in-
tuitive ‘foundations’ for mathematical ge-
ometry, he strongly welcomed Hilbert’s ax-
iomatic method as a tool for exploring the
different possibilities to provide mathemat-
ical systems of geometrical notions which
could then be compared with empirical ev-
idence about ‘space’. In the talk I will out-
line Hausdorff’s route to the resulting ‘con-
sidered empiricism’ in order to compare it
with certain other contemporary views on
the status of geometry, such as Poincaré’s
and Schlick’s.

The second lecture in this series will
be given by Professor Dr. Scott Wal-
ter (Archives Henri Poincaré, University
of Nancy) on Hermann Minkowski and
the Scandal of Spacetime, on Wednesday,
January 16, 2008, 17:30, ESI Schrödinger
Lecture Hall.

Abstract: The ubiquity in contemporary
physics of spacetime and related geomet-
ric objects belies the near-universal rejec-
tion by physicists of Hermann Minkowski’s
theory from its inception in November
1907 to 1911. In time, of course, space-
time came to be synonymous with Ein-
stein’s special theory of relativity, the most
powerful tool for discovery in relativistic
physics, and the most effective means of
presenting the new dynamics. How did this
change come about? Minkowski’s interpre-
tation of spacetime was initially a scan-
dal for physicists, challenging–and eventu-
ally overturning–some of their most cher-
ished views of the nature of physical reality.
By comparing the work of Henri Poincaré,
Einstein, Minkowski and others, the scan-
dalous aspect of spacetime is brought into
sharp focus, and its initial rejection more
easily understood. I will argue that in this
instance, formal tools played an essential
role in quelling the scandal.

We hope that these two talks serve
as another opportunity to bring physicists,
mathematicians, and historians of science
together in a single audience.

ESI News

Awards and Prizes
Hermann Kümmel Award to Frank Ver-
straete
Frank Verstraete has received the “Her-
mann Kümmel Early Achievement Award
in Many-Body Physics” 2007. This prize
is awarded by the International Advisory
Committe of the International Conference
Series on Recent Progress in Many-Body
Theories. Professor Verstraete receives the
award “for his pioneering work on the
use of quantum information and entan-
glemet theory in formulating new and pow-
erful nemerical simulation methods for use
in strongly correlated systems, stochastic
nonequilibrium systems and strongly cou-
pled quantum field theories.”
Frank Verstraete will be a co-organizer
of an ESI-workshop on “Tensor network
methods and entanglement in quantum

many-body systems”, 16. bis 18. Januar
2008, and of the ESI-programme Entan-
glement and correlations in many-body
quantum mechanics in August – October
2009.

Ignaz L. Lieben Prize to Markus As-
pelmeyer
The Austrian Academy of Sciences has
awarded the Ignaz L. Lieben Prize 2007
to Markus Aspelmeyer “for the outstand-
ing achievments of the young scientist in
quantum optics and quantum information.”
This prize is the oldest prize awarded by
the Academy.

Isaac Newton Medal to Anton Zeilinger
Anton Zeilinger is the first recipient of the
Isaac Newton Medal awarded by Institute
of Physics (IOP). Zeilinger was honoured
for “his pioneering conceptual and experi-
mental contributions to the foundations of
quantum physics, which have become the
cornerstone for the rapidly-evolving field

of quantum information”.

START Prize to Bernhard Lamel
Bernhard Lamel was awarded a START
Prize by the Austrian Science Foundation
(FWF) for his groundbreaking work on
‘Biholomorphic Equivalence’ in the theory
of functions of several complex variables.
The START Prize is the highest award for
young scientists in Austria.

Wittgenstein Prize to Christian Kratten-
thaler
Christian Krattenthaler was awarded the
Wittgenstein Prize by the Austrian Science
Foundation (FWF) for his groundbreak-
ing work on combinatorial problems. The
Wittgenstein Prize is the most valuable and
prestigious prize for scientific research in
Austria.

Christian Krattenthaler will be one of the
organizers of the ESI-programme Combi-
natorics and Statistical Physics in Febru-
ary – June 2008.
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Current and future activities of the ESI

Thematic Programmes 2008

Combinatorics and Statistical Physics, February 1 – June 15, 2008

Organisers: M. Bousquet-Melou, M. Drmota, C. Krattenthaler, B.
Nienhuis

Workshop, May 25 – June 7, 2008

Summer School, July 7 – July 18, 2008

Metastability and Rare Events in Complex Systems, February 1
– April 30, 2008

Organizers: P.G. Bolhuis, C. Dellago, E. van den Eijnden

Workshop, February 17 – February 23, 2008

Hyberbolic Dynamical Systems, May 12 – July 5, 2008

Organisers: H. Posch, D. Szasz, L.-S. Young

Workshop, June 15 – June 29, 2008

Operator Algebras and Conformal Field Theory, August 25 –
December 15, 2008

Organisers: Y. Kawahigashi, R. Longo, K.-H. Rehren, J. Yngvason

Thematic Programmes 2009

Representation theory of reductive groups — local and global
aspects, January 2 – February 28, 2009
Organizers: G. Henniart, G. Muic and J. Schwermer

Number theory and physics, March 1 - April 18, 2009
Organizers: A. Carey, H. Grosse, D. Kreimer, S. Paycha, S.
Rosenberg and N. Yui

Selected topics in spectral theory, May 4 – July 25, 2009
Organizers: B. Helffer, T. Hoffmann-Ostenhof and A. Laptev

Large cardinals and descriptive set theory, 2 weeks in June –
July 2009
Organizers: S. Friedman, M. Goldstern, R. Jensen, A. Kechris
and W.H. Woodin

Entanglement and correlations in many-body quantum
mechanics, August 18 – October 17, 2009
Organizers: B. Nachtergaele, F. Verstraete and R. Werner

Other Scientific Activities in 2007

ESF Workshop on Noncommutative Quantum Field Theory,
November 26 – November 29, 2007

Organizer: Harald Grosse

Fourth Vienna Central European Seminar on Particle Physics
and Quantum Field Theory, November 30 – December 2, 2007

Theme: Commutative and Noncommutative Quantum Field theory

Organizer: Helmuth Hüffel

EU-NCG Miniworkshop on Ergodic Theory and von
Neumann Algebras, December 3 – December 14, 2007
Organizer: K. Schmidt

Spectral theory and partial differential equations, December
10 – December 21, 2007
Organizers: T. Hofmann-Ostenhof and A. Laptev

Ergodic theory — Limit theorems and Dimensions, December
17 – December 21, 2007
Organizers: F. Hofbauer and R. Zweimüller

Other Scientific Activities in 2008

Tensor network methods and entanglement in quantum
many-body systems, January 16 – January 18, 2008
Organizers: F. Verstraete, G. Vidal and M. Wolf

Ab-initio density-functional studies of intermetallic
compounds, January 23 – January 25, 2008
Organizer: J. Hafner

15th Anniversary of the ESI, April 14, 2008
Organizers: W.L. Reiter, K. Schmidt, J. Schwermer and J.
Yngvason

Frontiers in Mathematical Biology: Mathematical population
genetics, April 14 – April 18, 2008
Organizers: R. Bürger and J. Hermisson

Topics in Mathematical Physics, July 21 – July 31, 2008
Organizers: C. Hainzl, R. Seiringer and J. Yngvason

Profinite Groups, December 7 – December 20, 2008
Organizers: K. Auinger, F. Grunewald, W. Herfort and P.A.
Zalesski
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