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Editorial
Klaus Schmidt

Although the sym-
posium in commem-
oration of Ludwig
Boltzmann’s death in
1905 was only a small
part of the scientific
programme of the ESI
in 2006, its impact

extended well beyond the usual scientific
clientele of the Institute.

Two public events accompanied the
symposium: a Wiener Vorlesung for a
general audience by Jürgen Renn of the
MPI for History of Science in Ber-
lin with the title Boltzmann und das
Ende des mechanischen Weltbildes, and
a Boltzmann exhibition on the premises
of the ESI, organized by W. Kerber, Dir-
ector of the Österreichische Zentralbiblio-

thek für Physik. Herbert Spohn’s article on
Boltzmann’s Legacy below discusses the
extent to which the fundamental concepts
Boltzmann formulated and struggled with
are still part of current research in physics.

THE BOLTZMANN
EXHIBITION AT THE ESI

Turning from the
past to the pres-
ent and future,
but not leaving
the theme of
Boltzmann com-
pletely, I should
mention that the
Boltzmann Lecture Hall at the ESI has just
been fitted with new audio-visual equip-
ment which should bring major improve-
ments to audibility and visibility in that
room.

Another item worth mentioning is that
the ESI is part of two recent successful
bids for Marie Curie Research and Train-
ing Networks. Details can be found in ‘ESI
News’ on p. 10.

Boltzmann’s Legacy
Herbert Spohn

From June 7 – June 9, 2006, the ESI organ-
ized and hosted a conference under the above
title to commemorate the death of Ludwig
Boltzmann in Duino almost one hundred
years ago on September 5, 1906. In the previ-
ous issue of ESI NEWS the reader will find a
most instructive contribution by W.L. Reiter
on the life and science of Boltzmann ([13]),
including a substantial bibliography. To help an appreciation of
the historical context, the conference was accompanied by an ex-
hibition by the Österreichische Zentralbibliothek für Physik, or-
ganized by W. Kerber, which turned out to be highly illuminating,
and which presented in particular photographs and original letters
which otherwise would have remained hidden in the vaults of the
library.1

At this conference fifteen prominent scientists covered various
aspects ranging from a historical perspective to how Boltzmann’s
ideas are alive in present day research. Amongst them there were
five Boltzmann medallists. For this the reader should know that
the Commission on Statistical Physics of the IUPAP (Interna-
tional Union of Pure and Applied Physics) awards at each of its
tri-ennial conferences two Boltzmann medals. They are regarded

as the highest scientific distinction in the community of statistical
physicists.

Commemorations of the kind we witnessed at this conference
are common scientific practice. They provide a short moment to
dispense with daily business and to reflect upon our scientific
origins and at the same time envision future directions. With
Boltzmann things seem to be somewhat different. Even though
we are separated from him by well over a hundred years, which is
a very long time span on the scale of theoretical physics, some of
the problems with which Boltzmann struggled are still of interest
today. This makes Boltzmann much closer to us than many of his
contemporaries. (As a native speaker I may add that Boltzmann
commands a very powerful language which is a mere pleasure to
read. On the other hand his technical, often overlong and convo-
luted, papers require considerable effort.)

Many contributions by Boltzmann have become textbook ma-
terial and thereby common knowledge. In contrast, in this note
I plan to illustrate current research which has reasonably direct
links to Boltzmann’s own work. My focus will be on two key is-
sues, one physical and one mathematical. The discussion is non-
technical and reflects, by necessity, a rather personal selection of
material.

1. Emergence of macroscopic structures
1.1. Thermal equilibrium. It is an experimental fact that dynam-
ical processes settle in a state of equilibrium, at least over a certain

1This exhibition has since been shown at the ICTP in Trieste and the Technical University of Munich. The entire exhibition can be viewed electronically at
http://www.zbp.univie.ac.at/webausstellung/boltzmann/flash/boltzmann.htm.
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time scale, in which matter appears to be motionless. Given the ba-
sic constituents of matter and their dynamical laws one would like
to know about physical properties of such equilibrium states, such
as their thermodynamic potentials, their phase diagram, perhaps
also some of their fluctuation properties as expressed through cor-
relations functions. Matter may be composed either of molecules
interacting through a classical potential or of free charges interact-
ing through the Coulomb potential. From astrophysics we know
matter under more extreme conditions, as e.g. white dwarfs and
neutron stars. High energy physics studies the quark gluon plasma
as yet another manifestation of a transient equilibrium structure
with its own characteristic time and length scales.

Boltzmann’s contributions to the theory of equilibrium states
stand out in two respects. Firstly he (and his contemporaries) had
to recognize the issue and to transform it into a scientific inquiry.
In demand was an atomistic model of matter. While today experi-
mental techniques have advanced to the point where single atoms
can be ‘seen’, in Boltzmann’s time the microscopic structure of
matter was a much less clear cut affair. It required a deep confid-
ence in the mechanistic world picture to postulate the existence
of atoms with their motion governed by Newton’s laws. In fact,
the confidence went sometimes too far. Mechanical models of the
ether eventually turned out to be elusive. In any case, given that
atoms move according to the laws of mechanics, how can one un-
derstand the behaviour of a large assembly of such particles? Of
course, first and foremost one wants to predict the properties of
thermal equilibrium states.

At this point Boltzmann argued for an answer of superb sim-
plicity ([2]). For the purpose of computing equilibrium time av-
erages of very particular functions on phase space (i.e. of observ-
ables with a particularly simple structure) we may pretend that the
system is in a statistical state corresponding to the uniform distri-
bution on a shell of fixed energy (and perhaps of further conserved
quantities determined by the way how equilibrium is maintained)
and compute the time average as ensemble average. We owe a
more manageable formulation of Statistical Mechanics to J.W.
Gibbs [8]. Since then it has taken generations of physicists to work
out the deep implications of Boltzmann’s postulate, a line of re-
search still ongoing today. Here, somewhat generously, Quantum
Statistical Mechanics can be included, since Boltzmann’s postu-
late of the microcanonical ensemble survived the quantum revolu-
tion with rather minimal modifications.

From his ansatz Boltzmann worked out the thermal properties
of ideal gases which convinced him to be on the right track. These
computations sometimes generate the misconception that from the
outset Boltzmann had only dilute gases in mind. His writings [2]
clearly state the opposite, and Boltzmann was very well aware that
the equilibrium statistical mechanics of nonideal gases would re-
quire the development of more powerful methods which in fact
became available only 50 years after he had accomplished the first
step.

1.2. Dynamical evolution. The dynamical laws governing the mo-
tion of nonviscous fluids were developed by Euler (1707 – 1783),
with the dissipative corrections due to Navier (1822) and Stokes
(1851). Obviously small fluid elements are assumed to satisfy
Newton’s second law, but a more detailed knowledge about the
structure of matter is not needed. The really crucial input is the
local, in space-time, validity of the laws of thermodynamics. For
dilute gases, on the other hand, the mean free time is the relev-
ant time scale, which is fine-grained enough to discern how local
equilibrium is approached. The relevant space scale is set by the
mean free path. A characteristic volume element then contains a

huge number of atoms and some of sort of statistical analysis is
asked for. Boltzmann [3] introduces the one-particle distribution
function f (N)(r, v, t) as the central object through∫

∆

d3rd3vf (N)(r, v, t)

= N−1 ·
(
the number of particles at time t in the volume

∆ ⊂ R3 × R3, where the spatial scale (1)

is in units of the mean free path.
)

Here N is the total number of particles. Note that the expression
in (1) is a random variable which, however, has a variance which
will tend to 0 as N → ∞. Thus no averaging beyond the one
expressed by the integral is needed. To write down an evolution
equation for ft = limN→∞ f (N)(t), Boltzmann assumed that in
the collision of two representative molecules at location r their
incoming velocities, v1 and v2, are statistically independent and
distributed according to(∫

R3
d3vft(r, v)

)−2

ft(r, v1)ft(r, v2) . (2)

Then
∂

∂t
ft(r, v) = −v · ∇rft(r, v) + Q

(
ft, ft

)
(r, v) . (3)

The first term on the right is the free streaming and the second
term is the collision operator. We do not write it out explicitly
and only indicate it to be quadratic in ft, but emphasize that, in
contrast to hydrodynamics, a detailed atomistic model of matter is
required. In particular, the collision term contains the differential
cross section as computed from the exact force law between the
molecules.

The Boltzmann equation (3) generalizes with minimal changes
to quantum mechanics. The free streaming results then from the
semiclassical approximation to the free Schrödinger equation. In
addition the differential cross section must be computed according
to the laws of quantum mechanics.

From a physical point of view the reduction from the N -body
dynamics to the evolution of a distribution function on the one-
particle phase space is a necessity. Otherwise there would be little
hope to understand in any detail the dynamical properties of dilute
gases. Closure relations, as the one used by Boltzmann, see (2),
are standard practice in many fields of physics, even through their
validity is often much less transparent than in the case of dilute
gases. One has to use closure relations as a working hypothesis,
no luxury can be afforded. Still, from a theoretical perspective,
one might wonder whether there is at least one realistic model
system for which such a closure relation be can shown to be valid
in a suitably specified limit, in other words up to quantifiable er-
rors. Low density gases stand out as a paradigm where one might
hope to complete such a program.

What is the problem? We consider N perfectly elastic hard
balls of diameter a in a container of volume V . Their mean free
path is V/Na2, which is kept fixed while N becomes large. As for
any other mechanical system we are free to impose initial condi-
tions, say at time t = 0. In our case they are random in such a way
that (1) and (2) hold up to an error which vanishes as N → ∞.
This said we are no longer free to make the further assumption of
independence at some later time t > 0. Whatever the correlations
may be, they are completely determined by the hard sphere dy-
namics. Rather, the property of independence has to be extracted
from the dynamics. On the scale of the mean free time there will
be order N collisions in total up to time t. So this is where the
difficulty manifests itself.

Erwin Schrödinger Institute of Mathematical Physics http://www.esi.ac.at/
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O.E. Lanford [12] succeeded to control the errors in (2) by
using the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of
correlation functions (he reported on his result at the conference).
But the programme remains half-completed only. The uniform
control of the BBGKY hierarchy could be achieved only up to
1/5-th of the mean free time. This in itself is a very important step
because it establishes that the mathematical programme of deriv-
ing the Boltzmann equation is sound and points at the reason why
(2) is valid. On the other hand, 1/5-th has no physical meaning.
Rather it is an artefact of how the estimate on the time-dependent
correlation functions is carried out. It remains as a challenge for
the future to extend the result of Lanford to an arbitrary time (in
units of the mean free time).

Let me add that, despite enormous efforts, for low density
quantum gases (and also weakly nonlinear wave equations, which
have a similar structure mathematically) an error bound in the
closure relation corresponding to (2) is not available at present.
There are preliminary results which make the validity of the ap-
propriate quantum analogue for (2) very plausible (cf. [6, 1, 14]),
but this constitutes only a very first step in a rigorous derivation.

2. Nonlinear evolution equations

In his famous address [9] on the occasion of the International
Congress in Mathematics 1900 in Paris, D. Hilbert listed 23 prob-
lems. Problem 6 refers to what he calls the mathematical invest-
igations of the axioms of physics. The Boltzmann equation is ex-
plicitly mentioned and Hilbert himself contributed to the subject
(cf. [10]). Since then there has been a stream of attempts to elu-
cidate the mathematical properties of the Boltzmann equation and
until present days the fascination remains. (C. Villani reported on
the current status during the conference.) So, how come that, even
after more than 130 years since Boltzmann first wrote down his
equation, the subject has not lost in momentum?

The Boltzmann equation (3) is a nonlinear evolution equation,
t 7→ ft, t ≥ 0, for the distribution function ft, ft ≥ 0, which is
defined on Λ × R3 with Λ the spatial domain and R3 the velo-
city space. The equation has a peculiar dualistic form. There is the
flow term which includes also the elastic collisions at the bound-
ary of Λ. The flow term is Hamiltonian, no dissipation, and linear.
Its characteristics are piecewise straight lines. On the other hand
the collision operator is quadratic. It is dissipative and responsible
for the approach to equilibrium. However, a collision occurs at a
particular spatial point, which makes the nonlinearity rather singu-
lar. The approach to equilibrium can only be the combined effect
of flow and collisions. From a physical point of view the natural
space for solutions is specified by positivity, finite mass, bounded
kinetic energy and bounded entropy:

ft ≥ 0 ,

∫
Λ×R3

d3rd3vft(r, v) <∞ ,∫
Λ×R3

d3rd3vv2ft(r, v) <∞ ,∫
Λ×R3

d3rd3vft(r, v) log ft(r, v) <∞ .

(4)

Formally these inequalities are conserved in time. Thus the imme-
diate mathematical problem is to establish existence and unique-
ness of solutions in the space of functions defined by (4). Unfortu-
nately such a general result is not available, except for the famous
contribution of DiPerna and Lions [5] who however use a some-
what unnatural modification to the meaning of solution.

More modestly, one may want to start with spatially homo-
geneous solutions. Then the flow term vanishes and the colli-
sion operator is reasonably regular. Existence and uniqueness
results for solutions are available. The only stationary solutions
of the Boltzmann equation are the Maxwellians Mρ,β(v) =
ρ(2π/β)−3/2 e−βv2/2 (assuming that

∫
d3vvft(v) = 0 for sim-

plicity of presentation and discussion). Here β = 1/kBT with T
the temperature and kB Boltzmann’s constant. Also the mass m
of a molecule is set to m = 1. Does ft converge as t → ∞ to
Mρ,β with ρ, β fixed through the initial datum as

∫
d3vf0(v) = ρ,

ρ−1
∫

d3vv2f0(v) = 3β−1? If so, how fast? The basic tool
to elucidate the long time behaviour is the monotonicity of the
Boltzmann H-function defined by

H(ft) =
∫

d3vft(v) log ft(v) . (5)

In order to control effectively the rate of convergence one needs in
addition some information on the entropy production dH(ft)/dt,
which then connects to the theory of logarithmic Sobolev inequal-
ities. The convergence to equilibrium turns out to be exponentially
fast, but only generically ([16]).

But even on this level basic issues remain. In quantum mech-
anics the Maxwell distribution is replaced by the Bose-Einstein
distribution Bz,β(v) = (z−1eβv2/2−1)−1, where z is the fugacity
and 0 < z ≤ 1. The quantum Boltzmann equation for massive
bosons has Bz,β as stationary solutions. Note that their maximal
density is ρmax =

∫
d3vB1,β(v). But for the initial distribution

function we are allowed to impose
∫

d3vf0(v) = ρ0 > ρmax. So
where does the excess mass go? Does the solution ft know that
the physical system wants to Bose condense, hence to form a δ-
like peak at v = 0? If so, is there a blow up in finite time ([11])?

To return to the spatially inhomogeneous case, the folklore
picture is that after a few mean free times the solution takes ap-
proximately the form of a local Maxwellian and the parameters of
the Maxwellian are governed by a set of partial differential equa-
tions. This is the phenomenon which Chapman and Enskog [4]
and, somewhat differently, Hilbert [10] tried to capture by their ex-
pansions. It is one of the most inspiring examples of scale separa-
tion for evolution equations, in our context the separation between
the kinetic and hydrodynamic scale. Nowadays problems of such
type run under the header of multiscale analysis and appear in per-
plexingly diverse mathematical contexts: the center manifold the-
ory of differential equations, blow up solutions of PDEs, Whitam’s
equations for nonlinear hyperbolic systems, to name only a few
more or less randomly.

To approximate the solution of the Boltzmann equation
through the incompressible Navier-Stokes equation is under good
control ([7, 15]). The compressible case is much less understood
mathematically. But the hydrodynamic limit is only one facet
of the long time behaviour. Does the solution of the Boltzmann
equation converge to a global Maxwellian as t → ∞? Through
which mathematical mechanism is the local dissipation due to col-
lisions spread throughout the system? (In brackets I recall that
Hörmander’s theory of hypoellipticity is designed precisely for
that purpose. There one deals with a noisy dynamical system in
which the noise acts only along a submanifold of the full phase
space. The issue is to have conditions ensuring that nevertheless
the noise induces effectively a spreading on the full phase space.)
A further aspect is to impose boundary conditions at ∂Λ, the sur-
face of Λ, in such a way that the global Maxwellian is no longer
admitted as a stationary solution. Is there then another station-
ary solution, a nonequilibrium steady state? Do multiple steady

http://www.esi.ac.at/ Erwin Schrödinger Institute of Mathematical Physics
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states show up as a suitable control parameter is increased? Of
course, for low-dimensional dynamical systems and for hydro-
dynamic systems the investigation of steady states and their as-
sociated bifurcation diagram have a long history. There is every
reason to expect that the Boltzmann equation should be no excep-
tion, but the analysis becomes more difficult. Case studies remain
rare.

The rich mathematical structure of the Boltzmann equation re-
tains its fascination and has been most stimulating in the attempt
to capture some of the intriguing mathematical phenomena within
the realm of simplified models.
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Causes of Ecological and Genetic Diversity
Reinhard Bürger

This December (11.12.2006 – 16.12.2006),
the ESI will host a workshop entitled Causes
of Ecological and Genetic Diversity which is
organized by the author and Ulf Dieckmann
from IIASA, Laxenburg, Austria. In fact, this
workshop is financially supported by the ESI
and by the Vienna Science and Technology
Fund (WWTF) via the WWTF project Math-
ematics and Evolution: Mathematical and Statistical Analysis of
Ecological and Genetic Diversity. As is obvious from the title,
this workshop falls into the field of mathematical biology, more
precisely into (theoretical) evolutionary biology. This is not the
first initiative of the ESI to support mathematical biology. From
December 2002 to February 2003, the programme Mathemat-
ical Population Genetics and Statistical Physics was organized
by Ellen and Michael Baake and by the author, with a follow-
up workshop in December 2003, and in November 2004, Anton
Wakolbinger, then Senior Research Fellow at the ESI, organized a
workshop on Stochastic Processes from Physics and Biology.

To set the past and future activities into perspective, I would
like to point out that mathematical biology is a vast and very

heterogeneous field, both with respect to the mathematical meth-
ods as well as with respect to biological topics. Usually, the dif-
ferent fields are distinguished according to biological criteria. A
list of the most important fields in mathematical biology includes
evolutionary biology, ecology, epidemiology, game theory, demo-
graphy, physiology, immunology, pattern formation, molecular
biology, cell biology, biomechanics, and several fields related to
medicine, e.g., cancer and tumor therapy, to mention only one.
Of course, there is overlap between several of them but, by and
large, they constitute quite different communities. Within most
fields, a multitude of mathematical techniques and methods are
employed, the most important probably being differential and dif-
ference equations (finite and infinite dimensional, ordinary and
partial), stochastic processes, discrete mathematics and statistics.
However, also harmonic analysis, differential geometry and other
more abstract fields do have interesting and beautiful applications
in mathematical biology.

Population genetics, the defining theme of the 2002/03 pro-
gramme and an integral part of the upcoming workshop, is part of
evolutionary biology. It is concerned with the study of the genetic
composition of populations. This composition may be changed by
segregation, selection, mutation, recombination, breeding struc-
ture, migration, and other genetic, ecological and evolutionary
factors. Therefore, in population genetics these mechanisms and
their interactions and evolutionary consequences are investigated.

Erwin Schrödinger Institute of Mathematical Physics http://www.esi.ac.at/
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Traditionally, population genetics has been applied to animal and
plant breeding, to human genetics and more recently to ecology
and conservation biology. It has important interfaces with mo-
lecular biology. One of the central topics is the investigation of
the mechanisms that generate and maintain genetic variability
in natural populations and the study of how this genetic vari-
ation, shaped by environmental influences, leads to evolutionary
change, adaptation and speciation. In particular, population genet-
ics provides the basis for understanding the evolutionary processes
that have led to the diversity of life we encounter and admire.

Of paramount importance in mathematical population genet-
ics and, more generally, in mathematical biology are models. In
contrast to theoretical physics, no useful general, formal theories
have been developed in the various fields of theoretical biology
and, presumably, don’t even exist. Surely, among others, we have
Mendel’s rules that describe the transmission of the hereditary ma-
terial (but even here there are exceptions) and we can formalize
the consequences of selection, recombination, mutation, etc., but
to understand the evolution of a trait, say body size or beak length
of a bird, much more is needed. A quantitative understanding of
the evolution of a trait requires knowledge of the number of genes
that contribute to the trait, more generally of the underlying ge-
netic architecture (dominance, epistasis), the mutation rates of the
genes, the distribution of new mutants, the genotype-phenotype
map, the effects of the environment during development, the pre-
cise selective pressure exercised by the environment (or by the
experimenter in case of artificial selection), the breeding structure
of the population and many more. One major problem is that only
a few of these factors can be incorporated into a model without
it becoming mathematically intractable. A second is that the most
important ingredients vary among species as well as among traits
within a species. For instance, the breeding system (monogam-
ous or polygamous with its many subforms, or random mating vs.
nonrandom mating) is of fundamental importance and may be dif-
ferent in closely related species. In addition, a species may mate
randomly with respect to some traits and assortatively (of varying
degree) with respect to others. A third obstacle to general theor-
ies is that many key phenomena, for instance, speciation can be
driven by several (very) different processes. Therefore, there are
often competing models which address the same, or closely re-
lated, questions. What is considered to be important and interest-
ing, in many cases depends on the biological background of the
investigator, e.g., whether he adheres to a genetics or an ecolo-
gical perspective.

As a matter of fact, mathematical models and methods have
a long history in population genetics, tracing back to Gregor
Mendel, who used elementary mathematics to calculate the expec-
ted frequencies of the genes in his experiments. He had a clearly
defined underlying model. Francis Galton and the biometricians,
notably Karl Pearson, developed new statistical methods to de-
scribe the distribution of trait values in populations and to pre-
dict their change between generations. The foundations of modern
population genetics were laid by the work of Ronald A. Fisher,
J.B.S. Haldane and Sewall Wright, who reconciled Mendelism
with Darwinism during the second and third decades of the twen-
tieth century. They demonstrated that the theory of evolution by
natural selection, proposed by Charles Darwin (1859), can be jus-
tified on the basis of genetics as governed by Mendel’s laws. The
work of Fisher, Haldane and Wright was highly mathematical for
the biology of that time and was properly understood by only a
small number of people. Nevertheless, their influence was enorm-
ous and they set the standards for mathematical modelling and for

rigour of theoretical investigations for the subsequent decades.
The major goal of the ESI programme in 2002/03 was to foster

the transfer of methods from theoretical physics, stochastics and
dynamical systems to problems from biological evolution, espe-
cially population genetics. Several of the highlights have been
published in the ESI preprint series; they revolved around the
following topics: particle systems and genetic drift, mutation-
selection balance, recombination and multilocus models. The
workshop in 2004 focused primarily on stochastic processes that
arise, in various guises, both in physics and population genet-
ics and on the corresponding methodology. For more details, the
reader may consult the scientific reports of the ESI for 2003
and 2004 (available from ftp://ftp.esi.ac.at/pub/Reports/2003.pdf and
ftp://ftp.esi.ac.at/pub/Reports/2004.pdf, respectively).

The upcoming workshop is also devoted to problems from
evolutionary biology, but it goes beyond population genetics by
bringing together scientists from genetics and ecology, mainly the-
orists but also biologists working empirically. The workshop re-
volves around one of the prime targets of theoretical and empirical
research in evolutionary biology, namely understanding the origin
and maintenance of genetic and ecological diversity. This includes
the ubiquitous variation among individuals within a single popu-
lation, the widespread differences of spatially distributed popula-
tions of the same species, as well as the stunning diversity among
species. The mechanisms generating and maintaining this vari-
ation are not fully understood, even less so the processes that are
involved in the formation of new species ([9]).

The last decade has brought about new approaches and sub-
stantial advances, both theoretical and empirical, in explaining
the maintenance of genetic variation, as well as of the origin and
maintenance of ecological variation (reviewed, e.g., in [1, 4, 5]).
Changing ecological conditions, newly available habitats and
evolution under frequency-dependent interactions can all lead to
the emergence of new ecological niches. Under such conditions,
subsequent evolutionary adaptations can result in intraspecific di-
versity, adaptive radiation and speciation. Traditionally, two com-
plimentary routes have been pursued in theoretical studies of di-
versifying evolutionary processes; one originating from mathem-
atical ecology, the other from mathematical population genetics.
Each has its specific strengths and weaknesses, underscoring the
seemingly insurmountable mathematical difficulties encountered
in models combining both aspects. Recently, fresh approaches
have been developed in both fields that now offer the possibil-
ity for a unified treatment providing new and deeper insights. One
is adaptive dynamics theory, a mathematical extension of evolu-
tionary game theory tailored to studying long-term evolutionary
dynamics driven by frequency-dependent ecological interactions
(e.g., [3, 4]). The other is multilocus genetics applied to ecologic-
ally relevant quantitative traits. In particular, multilocus genetic
models of quantitative traits subject to various forms of balancing
selection have been developed and analyzed, providing analytical
conditions for the maintenance of diversity ([8, 2, 7]). Approaches
of this synthetic type promise great potential: they can be general-
ized and extended to address problems of long-term evolution by
studying the fate of new mutations (e.g., [10, 6]) and they are ap-
plicable to central evolutionary problems such as the colonization
of empty niches or the maintenance of variation in heterogeneous
environments.

The major scientific challenge in this field thus consists in the
development and analysis of mathematical models that incorpor-
ate enough genetics and ecology to be realistic and yet remain
tractable. This will be addressed in the upcoming workshop and
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the inspiring atmosphere at the ESI which greatly stimulates inter-
action among participants may well induce significant advances.
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Arithmetically Defined Kleinian Groups
Joachim Schwermer

An orientable hyperbolic 3–manifold is iso-
metric to the quotient of hyperbolic 3–
space H3 by a discrete torsion free sub-
group Γ of the group Iso(H3)0 of orienta-
tion – preserving isometries of H3. The latter
group is isomorphic to the (connected) group
PGL2(C), the real Lie group SL2(C) mod-
ulo its center {±1}. Generally, a discrete sub-

group of PGL2(C) is called a Kleinian group. The group Γ is said
to have finite covolume if H3/Γ has finite volume, and is said to
be cocompact if H3/Γ is compact.

Among hyperbolic 3–manifolds, the ones originating from
arithmetically defined Kleinian groups form a class of special in-
terest. Such an arithmetically defined 3–manifold H3/Γ is essen-
tially determined (up to commensurability) by an algebraic num-
ber field k with exactly one complex place, an arbitrary (but pos-
sibly empty) set of real places and a quaternion algebra D over
k which ramifies (at least) at all real places of k. These arith-
metic Kleinian groups fall naturally into two classes. They can
be distinguished by the compactness or non–compactness of the
corresponding manifold H3/Γ, since it turns out that this quotient
always has finite volume.

If the arithmetic group Γ is not cocompact in PGL2(C),
then the defining field k is an imaginary quadratic extension field
Q(
√

d), d < 0, d a square free integer. An arithmetic group of
this type is commensurable to the group PGL2(Od) where Od

denotes the ring of integers in k. As early as 1892 L. Bianchi stud-
ied this class of groups, today named after him.

If the arithmetic group Γ is cocompact in PGL2(C), then the
group Γ arises from an order in a division quaternion algebra D
over k which ramifies (at least) at all real places of k.

Within Thurston’s geometrization program for 3–manifolds
the class of hyperbolic 3–manifolds plays a fundamental role but is
still not well understood. Due to the underlying connections with

number theory the arithmetically defined hyperbolic 3–manifolds
seem to be in many ways more tractable. There is a fruitful inter-
action between geometric – topological, group – theoretical and
arithmetic questions, methods and results. Many of the investiga-
tions carried through in recent years are dealt with in [4] or [13],
both valuable sources.

Geometric cycles versus automorphic forms

Aside from the material covered in [13] there are some general
geometric or arithmetic methods developed in the realm of the
theory of arithmetic groups (in particular, those emerging in the
theory of automorphic forms) which might help in understanding
the specific case of arithmetically defined Kleinian groups.

In particular, from the geometric point of view, there is the
concept of special cycles on arithmetic locally symmetric man-
ifolds of the form X/Γ (e. g. hyperbolic n–manifolds Hn/Γ).
These special cycles arise naturally as connected components of
the fixed point set of a morphism on X/Γ induced by a rational
automorphism of finite order on the underlying algebraic group.
In particular, the rigorous use of non–abelian Galois cohomology
serves as a suitable general framework to analyze the role these
special cycles play.

This approach has the following applications in our context:

— if Γ is a Bianchi group, a study of the involution on H3/Γ
induced by the non–trivial Galois automorphism of k/Q shows
that these non–compact manifolds admit an abundance of totally
geodesic hypersurfaces. They play a fundamental role in con-
structing non–bounding cycles, as well as in related questions in
cohomology and its interpretation in terms of the automorphic
spectrum (e.g. see [5], [6], [17])

— by use of the general formula for the intersection number
of special cycles phrased in terms of non–abelian Galois cohomo-
logy (as proved in [18]) one obtains a slightly alternative approach
to the non–vanishing result of Millson–Raghunathan [15] for the
Betti numbers of certain compact arithmetically defined hyper-
bolic n–manifolds. These correspond (up to commensurability) to
groups of units of non–degenerate quadratic forms on ln+1 of in-
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dex (n, 1), all of whose conjugates are positive definite, and where
l 6= Q is a totally real number field.

In the case n = 3, this construction determines a specific
classM of cocompact Kleinian groups under the exceptional iso-
morphism

PGL2(C)→̃Iso(H3)0←̃SO0(3, 1).

There are some constraints on the defining field and the division
algebra D, respectively.

From the arithmetic point of view, the principle of Langlands
functoriality in the theory of automorphic forms makes it possible
to obtain specific types of cuspidal automorphic forms on GL2/k
where k is an algebraic number field subject to certain conditions.
This is a consequence of the base change lift as constructed in
[10], [8]. This construction allows us (cf. [9]) to exhibit non–
vanishing cuspidal cohomology classes for arithmetic subgroups
(defined by congruence conditions) in PGL2(k) (up to subgroups
of finite index) for the field in question. This result applies, in par-
ticular, to Bianchi groups.

Via the Jacquet–Langlands correspondence [7] between
cuspidal automorphic representations for GL2 and automorphic
representations of its inner forms one obtains non–vanishing co-
homology classes in cases of cocompact Kleinian groups. The
class of groups dealt with contains the class M of cocompact
Kleinian groups alluded to above but is much larger. Thus, this
approach makes it even possible to construct non–vanishing co-
homology classes on compact arithmetically defined hyperbolic
3–manifolds which do not admit totally geodesic hypersurfaces,
that is, in cases not covered by the geometric methods discussed
above.

For example, this construction of non–vanishing automorphic
cohomology classes can be carried out in the case of the collec-
tion H of cocompact arithmetic Kleinian groups which are com-
mensurable to groups of units of skew–Hermitian forms on qua-
ternionic vector spaces. This latter result was also obtained by Li–
Millson [11] using theta series. However, the method [9] as dis-
cussed here gives a unified approach to the non–vanishing results
in the case of the two classesM and H. In both cases the arith-
metically defined hyperbolic 3–manifolds H3/Γ are determined
by a quaternion division algebra D over a field k as above where
k contains a subfield of index 2. This subfield has to be a totally
real field. Thus, a simple base change construction permits to ex-
hibit non–trivial automorphic classes.

An example

We illustrate other results made possible in the automorphic
framework by the following specific example. Its scope seems to
reach beyond geometry.

Let k be an algebraic number field of degree n = r1+2r2. The
sign of its discriminant is determined by the number of complex
places of k, i.e. sign (dk) = (−1)r2 . Thus, given a cubic exten-
sion E/Q which has exactly one complex place its discriminant
dE is negative. Such a field is necessarily non–normal over Q.
More precisely, if E = Q(x), its normal closure N is a quadratic
extension of E. It can be described as N = E(

√
dE)i its Galois

group G(N/Q) is isomorphic to S3, the symmetric group in three
letters.

By use of Cardan’s formula for the root of a cubic polynomial
X3 + aX2 + bX + c over Q such cubic non–normal extensions
can be easily constructed. Notice that any cubic can be reduced to

the form g = X3 + pX + q by a change of variable. If the dis-
criminant −4p3 − 27q2 of g is negative than g has a unique real
root. Adjoining a root of g to Q gives a cubic extension E of the
desired type. For example, let E = Q(x) where x is a root of the
cubic polynomial x3 − x − 1. This is the unique cubic field of
discriminant -23.

Let D be a division quaternion algebra over E which rami-
fies at least at the real place (and one finite place) of E. Then
the corresponding compact hyperbolic 3–manifolds have non–
vanishing first Betti number up to covering (see below). This result
gives strong evidence that the virtual Haken conjecture (or, in its
stronger form, known as the virtual positive Betti number conjec-
ture) is true for arithmetically defined hyperbolic 3–manifolds.

Virtual positive Betti number conjecture

One of the most interesting conjectures in 3–manifold theory is the
one by Waldhausen [20] stated in 1968. It says: Suppose M is an
irreducible 3–manifold whose fundamental group is infinite. Then
there exists a finite covering M ′ of M which is Haken, that is, it is
irreducible and contains an embedded incompressible surface. An
even stronger form states (under the same assumptions) that there
exists a finite covering M ′ with non–vanishing first Betti num-
ber b1(M ′). This form is called the virtual positive Betti number
conjecture and usually attributed to Thurston ([3], 1.2.). The sig-
nificance of the former conjecture lies in the fact that it is known
that 3–manifolds which are virtually Haken are geometrizable.

As the most challenging one, the case of hyperbolic 3–
manifolds has gained increasing attention in recent years. Some
results confirming the conjecture in specific cases were obtained
in [14], [12], by geometric techniques and in [9], [2] by an auto-
morphic approach. Further evidence is given by the experiments
described in [3]. For the analogous question in the case of hyper-
bolic n–manifolds we refer to [14], [11].

As discussed above, the geometric approach provides ex-
amples where this conjecture is proved. As a consequence of the
automorphic approach one obtains

Theorem. Let H3/Γ be an arithmetically defined hyperbolic
3–manifold where Γ is a congruence group. Suppose that the de-
fining field k is a cubic non–normal extension of Q. Then there ex-
ists a finite covering of H3/Γ with non–vanishing first Betti num-
ber.

Nonetheless, the original conjecture remains open in a num-
ber of cases. For example, let E = Q(x) where x is a root of the
irreducible quintic polynomial g = X5 − 9X + 3 over Q (or take
f = X5− 16X +2). The polynomial has three real roots and two
conjugate complex roots. The extension E/Q has degree 5 and is
non–normal. It is not contained in any solvable extension. Let D
be a division quaternion algebra over E which ramifies at least at
the three real places (and one finite place) of E. Given an arith-
metic subgroup in the units of D the virtual positive Betti number
conjecture is not known to be true in this case at hand. To my
knowledge the methods known so far do not apply. Any progress
in the base change construction as described above improves the
situation.

Implicit in our discussion in this account is the hope that the
ideas described here might help in gaining a better understanding
of the geometry as well as the number theory of arithmetically
defined hyperbolic 3–manifolds.
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The workshop ‘Automorphic Forms, Geometry and Arithmetic’, to be held at the ESI from February 11 - February 24, 2007, will focus
on several aspects of the theory of automorphic forms with an emphasis on the relations among the Langlands functoriality principle,
automorphic L-functions, Galois representations, and questions in geometry, in particular, those regarding locally symmetric spaces.
The study of arithmetically defined hyperbolic manifolds provides a valuable example for the richness of this topic.

Amenability
Vadim A. Kaimanovich

The notion of amen-
ability is a natural
generalization of fi-
niteness or compact-
ness. It was intro-
duced in 1929 by J.
von Neumann (un-
der the straightfor-

ward German name Messbarkeit later
changed to the more appropriate Mittel-
barkeit, cf. the French moyennabilité; in
1955 M. M. Dye first called it amenability).
Amenable groups are those groups which
admit an invariant mean (rather than an in-
variant probability measure, which is the
case for finite or compact groups).

Actually, the history of the subject goes
back to H. Lebesgue who asked in 1904
whether or not a positive, finitely (but not
countably!) additive, translation-invariant
locally finite measure different from the
standard Lebesgue measure exists on the
real line. Later, a fundamental question
of F. Hausdorff led to a general study of
isometry-invariant measures and the well-
known Banach–Tarski–Hausdorff paradox
(it states that by using the axiom of choice
it is possible to take a solid ball in 3-
dimensional space, cut it up into finitely
many non-measurable pieces and, moving
them using only rotations and translations,
reassemble the pieces into two balls of the
same radius as the original). J. von Neu-
mann showed that the dichotomy in this
paradox resides in the different properties
of the corresponding isometry groups.

Nowadays there are numerous other
(equivalent) characterizations of amenable
groups. The constructive Reiter condition
(existence of approximately invariant se-
quences of probability measures on the
group) is often used for verifying amen-
ability (for instance, for the group of in-
tegers such a sequence is provided by the
usual Cesaro averages). On the other hand,
the most important application of amenab-
ility comes from its characterization by the
fixed point property for affine actions of
amenable groups on compact spaces (once
again, for the integers this amounts to the
Bogolyubov–Kryloff theorem on existence
of invariant measures for homeomorph-
isms of compact sets). Other definitions of
amenability can be given in isoperimetric
terms (Følner sets), in terms of the rep-
resentation theory (the weak containment
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property), in spectral terms (Kesten’s spec-
tral gap theorem), etc., etc.

The classical notion of an amenable
group has been generalized in many direc-
tions and currently plays an important (and
sometimes crucial) role in many areas, such
as dynamical systems, von Neumann and
C∗-algebras, operator K-theory, geomet-
ric group theory, rigidity theory, random
walks, etc.

For instance, R. Zimmer was the first to
notice that certain actions of non-amenable
groups behave as if these groups were
amenable, which in the late 70’s led him
to the notion of amenability for group ac-
tions, equivalence relations and foliations.
Simultaneously R. Bowen and A. Vershik
came up with the first examples of hyper-
finite orbit equivalence relations for actions
of non-amenable groups. Following Zim-
mer’s work, A. Connes, J. Feldman and B.
Weiss proved the equivalence of amenabil-
ity and hyperfiniteness for discrete equival-
ence relations. Actually, groups, group ac-
tions, equivalence relations and foliations
can all be treated in a unified way by using
the notion of an amenable groupoid intro-
duced by J. Renault.

Amenable groupoids (in particular,
those associated with boundary actions)
have been at the center of recent develop-
ments in the theory of operator algebras.
For example, if a locally compact group
admits an amenable action on a compact
space, then its reduced C∗-algebra is ex-
act. The question of whether or not every
locally compact group admits such an ac-

tion was settled negatively with a counter-
example by M. Gromov. A recent theorem
of N. Higson and G. Kasparov for groups,
and its generalization to groupoids by J. L.
Tu, show that amenable groups and group-
oids satisfy the Baum–Connes conjecture,
which led to a proof by N. Higson of the
Novikov conjecture for any locally com-
pact group (more generally, any locally
compact groupoid) that admits an amen-
able action on a compact space.

These developments were the sub-
ject of several monographs (let alone nu-
merous survey articles) on various as-
pects of amenability: F.P. Greenleaf, In-
variant means on topological groups
and their applications (1969), J.-P. Pier,
Amenable locally compact groups (1984),
A.L.T. Paterson, Amenability (1988), C.
Anantharaman-Delaroche and J. Renault,
Amenable groupoids (2000), V. Runde,
Lectures on amenability (2002).

However, certain very basic questions
about amenability are still very much open,
one of the well-known examples being
the question about the amenability of the
Thompson group, which is the group of
all orientation preserving piecewise linear
homeomorphisms of the interval [0, 1] onto
itself such that the values of the derivative
are powers of 2 and the discontinuity points
are dyadic rationals.

It would be impossible to cover all
the subjects connected with the notion of
amenability within the framework of a
single programme. The ‘Amenability 2007’

program at ESI will be concentrated on
several interconnected research areas at the
crossroads of Analysis, Algebra, Geometry
and Probability, including:

• amenability of self-similar groups;
relation with conformal dynam-
ics for iterated monodromy groups
of rational maps; non-elementary
amenable groups;

• graphed equivalence relations and
amenability; cost of equivalence re-
lations; L2 cohomology;

• amenable groupoids; topological
amenability of boundary actions;
amenability at infinity; Baum–
Connes and Novikov conjectures;

• amenability and rigidity; bounded
cohomology;

• quasi-isometric classification of
amenable groups, in particular, of
nilpotent and solvable ones; geomet-
ricity of various group properties;

• Dixmier’s conjecture on characteriz-
ation of amenability in terms of unit-
arizable representations;

• generalizations of amenability: A-T-
menabilty (property of Haagerup);
groups without free subgroups; su-
peramenability;

• quantitative invariants of amenable
groups: growth, isoperimetry, return
probability, asymptotic entropy of
random walks, etc.

The first workshop of the Amenability Programme ‘Amenability beyond groups’ will be held at the ESI from February 26 – March 17,
2006, and will offer minicourses by Claire Anantharaman, Gabor Elek, Masaki Izumi, Vadim Kaimanovitch and Alain Valette.

There will be two further workshops in this programme: ‘Algebraic aspects of amenability’ (June 18 - June 30, 2007) and ‘Geo-
metric and probabilistic aspects of amenability’ (July 2 - July 14, 2007). These two workshops will be supported in part by the Marie
Curie Network on Geometric, Analytic and Ergodic Aspects of Group Theory (cf. p. 10).

Interaction of Mathematics
and Physics at the Turn of
the Twentieth Century
Joachim Schwermer

The lecture series Interaction of Math-
ematics and Physics at the Turn of the
Twentieth Century, initiated in 2005 by
Senior Research Fellow Della D. Fenster
and Joachim Schwermer, will be continued
this autumn.

On November 16, 2006, there will be
two talks. The first one is given by Cath-
erine Goldstein (CNRS, Paris) and dis-
cusses Geometry and Nature according

to A.N. Whitehead. Catherine Goldstein
writes: Whitehead’s contributions to phys-
ics were written in the period between
his famous work on logic with Bertrand
Russell, the Principia mathematica, and
the philosophical texts to Physical Science
(1922), written when Whitehead was Pro-
fessor of Applied Mathematics at Imperial
College in London. Whitehead developed
in particular an alternative theory to that
of Einstein’s general relativity, a theory
based on a flat space-time, but which was
able to offer at the time equivalent experi-
mental predictions; it was rediscovered and
developed by Synge and his collaborators
in the 1950s. Whitehead’s proposal was
anchored on his refusal to identify funda-

mental physical concepts with variables in
mathematical equations and, in his own
words, ‘to cramp the imagination of the
physicist by turning physics into geometry.
In the talk, we shall discuss both the sci-
entific and the philosophical aspects of this
proposal, compare them to those of more
orthodox approaches, such as Einstein’s,
and use the case of Whitehead to discuss
afresh the classical question of the role of
mathematics in physics.

The second talk on November 16, 2006,
by Jim Ritter (Université Paris 8), deals
with Mathematizations of the World Pic-
ture: Mathematicians in Unified field the-
ory 1920 – 1930. Jim Ritter describes his
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lecture as follows: It is generally admit-
ted that general relativity inaugurated a
new symbiosis between mathematics, par-
ticularly geometry, and physics. But in fact
the modalities of this relationship, and even
the fundamental objects put into play, were
far from being uniform. I will examine

this question from the point of view of
two groups of mathematicians — Oswald
Veblen and Tracy Thomas at Princeton and
Élie Cartan and Henri Eyraud in Paris —
who, in the 1920s, tried in quite different
ways to use geometry to participate in Ein-
stein’s attempts to develop a single uni-

fied physical theory. In doing so I will dis-
cuss how the mathematicians conceptual-
ized their new role in physics and how their
efforts were received by physicists.

Further talks in this series will be an-
nounced on the ESI webpage.

The ESI Senior Research
Fellows Programme

Over the past three years the ESI has in-
tensified its cooperation with the local sci-
entific community and, in particular, with
the graduate programmes of the Univer-
sity of Vienna and the Vienna University of
Technology through establishing a Senior
Research Fellows Programme which offers

— among other things — advanced lecture
courses for graduate and postgraduate stu-
dents.
For the year 2006/07 the following lecture
courses are planned.

Autumn 2006

Ioan Badulescu (Université de Poitiers):
Representation Theory of the General Lin-
ear Group over a Division Algebra.

Thomas Mohaupt (University of Liver-

pool): Black holes, supersymmetry and
strings (this lecture course will continue in
May/June 2007).

Spring 2007

Vadim Kaimanovich (International Uni-
versity Bremen): Amenability and Random
Walks.

Miroslav Englis (Academy of Sciences,
Prague): Analysis on Complex Symmetric
Spaces.

The ESI Junior Research
Fellows Programme

The Junior Research Fellows Programme
is now in its third year of operation. Fun-
ded by the Austrian Ministry of Science,
it provides support for PhD students and
young post-docs to participate in the sci-
entific activities of the Institute and to col-
laborate with its visitors and members of
the local scientific community. An import-
ant aspect of this scheme is to encourage
women to enter research careers in math-
ematics or mathematical physics, and part
of the funding of the program is specific-
ally earmarked for this purpose.

In 2006 there were 28 Junior Research
Fellows visiting the ESI as part of this
programme, 7 of them women. Their vis-
its ranged from two to six months. The
ESI received a large number of applica-
tions of highly qualified post-docs for fund-
ing of extended visits but unfortunately
only some of them could be covered by
the Junior Research Fellow Programme.
In view of the close and well-established
links between the ESI and many lead-
ing Eastern European academic institutions
this programme was particularly beneficial
to young researchers from Eastern Europe
and Russia. However, this year the coun-
tries of origin ranged from Austria, Poland,
Great Britain, Hungary, Romania, Italy to

Sweden and Mexico. The scientific in-
terests of the Fellows included relations
between theoretical physics and algeb-
raic geometry, quantum stochastic calcu-
lus, area preserving maps, geometric Lang-
lands programme and modular curves, to
name a few. The presence of the Junior Re-
search Fellows contributed significantly to
the positive and dynamic atmosphere at the
ESI.

The next deadline for applications for
ESI Junior Research Fellowships will be
April 30, 2007. A call for applications will
be posted on the ESI web site in March
2007.

ESI News

On May 15, 2007 there will be a celebra-
tion of Walter Thirring’s 80th birthday at
the ESI. Walter Thirring was the founding
president of the ESI and is now its honor-
ary president. He continues to be actively
involved in scientific events at the Institute.
There will be lectures by Elliott Lieb (Prin-
ceton), Wolfgang Rindler (Dallas) and Ju-
lius Wess (Munich) to mark the occasion.

The ESI is part of two successful bids for
Marie Curie Research and Training Net-
works.

The first network will start in January
2007 and has the title European Training
Courses in Group Theory (Geometric,
Analytic and Ergodic Aspects of Group

Theory). It is coordinated by Hamish Short
(Marseille) and will include the following
activities:

• 22 – 26 January 2007, Embeddings
of metric spaces into Banach spaces,
one week conference, Lausanne
[EPFL],

• 5 February – 2 March 2007, Geomet-
ric group theory, four week training
course, CIRM [CNRS],

• 25 June – 6 July 2007, Amenabil-
ity, two week training course, Vienna
[ESI],

• January 2008, Expanders, one week
training course, Jerusalem [HUJI],

• June 2008, Non-positive curvature
and the elementary theory of free
groups, one week training course,

AAV, Crete [NKUA],

• Spring 2009, Interactions between
operator algebras, groups and geo-
metry, one week training course,
CIRM [CNRS],

• July 2009, Boundaries, one week
training course, Graz [TUG].

The second Network has the title Non-
commutative Geometry, is coordinated
by David Evans (Cardiff) and will run for
four years. The network consists of the fol-
lowing institutions:

• Cardiff University, United Kingdom,

• Dublin Institute for Advanced Stud-
ies, Ireland,

• Københavns Universitet, Denmark,

Erwin Schrödinger Institute of Mathematical Physics http://www.esi.ac.at/



ESI NEWS Volume 1, Issue 2, Autumn 2006 11

• University of Southern Denmark,
Denmark,

• Università degli Studi di Roma ‘Tor
Vergata’, Italy,

• Universitetet i Oslo, Norway,

• Centre National de la Recherche Sci-
entifique, France,

• Westfälische Wilhems-Universität
Münster, Germany,

• Katholieke Universiteit Leuven, Bel-

gium,

• Erwin Schrödinger Institute for
Mathematical Physics, Austria,

• Institutul de Matematica ‘Simon
Stoilow’ al Academiei Romane, Ro-
mania.

The unifying mathematical concept behind
this programme is the use of noncommut-
ative operator algebras and noncommutat-
ive geometry to understand singular spaces
or quantum spaces, replacing classical to-

pological or measure spaces and the as-
sociated commutative algebras of continu-
ous or measurable functions with noncom-
mutative algebras of operators. Bringing
together groups in Europe having a com-
mon goal in pursuing the deep connec-
tions between various branches of mathem-
atics and physics we plan to address their
conjectures and problems through a train-
ing network preparing young researchers
equipped to work in operator algebras and
noncommutative geometry.

Current and future activities of the ESI

Thematic Programmes

Global Optimization – Integrating Convexity, Optimization,
Logic Programming, and Computational Algebraic Geometry,
October 1 – December 23, 2006
Organizers: A. Neumaier, I. Bomze, I. Emiris, L. Wolsey

Workshop: December 4 – December 8, 2006

Amenability, February 26 – July 31, 2007.
Organizers: A. Erschler, V. Kaimanovich, K. Schmidt

Workshop on amenability beyond groups, February 26 – March
17, 2007

Workshop on algebraic aspects of amenability, June 18 – June
30, 2007

Workshop on geometric and probabilistic aspects of
amenability, July 2 – July 14, 2007

Mathematical and Physical Aspects of Perturbative Aproaches
to Quantum Field Theory, March 1 – April 30, 2007
Organizers: R. Brunetti, K. Fredenhagen, D. Kreimer, J. Yngvason

Poisson Sigma Models, Lie Algebroids, Deformations and
Higher Analogues, August 1 – September 30, 2007
Organizers: H. Bursztyn, H. Grosse, T. Strobl

Applications of the Renormalization group, October 15 –
November 25, 2007
Organizers: H. Grosse, G. Huisken, V. Mastropietro

Combinatorics and Statistical Physics, February 1 – June 15, 2008
Organisers: M. Bousquet-Melou, M. Drmota, C. Krattenthaler, B.
Nienhuis

Workshop, May 25 – June 7, 2008

Summer School, July 7 – July 18, 2008

Metastability and Rare Events in Complex Systems, February 1
– April 30, 2008
Organizers: P.G. Bolhuis, C. Dellago, E. van den Eijnden

Workshop, February 17 – February 23, 2008

Hyberbolic Dynamical Systems, May 12 – July 5, 2008

Organisers: H. Posch, D. Szasz, L.-S. Young

Workshop, June 15 – June 29, 2008

Operator Algebras and Conformal Field Theory, August 25 –
December 15, 2008

Organisers: Y. Kawahigashi, R. Longo, K.-H. Rehren, J. Yngvason

Other Scientific Activities

Workshop: Complex Analysis, Operator Theory and
Applications to Mathematical Physics, November 6 – November
17, 2006

Organizers: F. Haslinger, E. Straube, H. Upmeier

Workshop: Modern Methods of Time-Frequency Analysis,
November 20 – November 24, 2006

Organizers: H. Feichtinger, K. Gröchenig, J. Benedetto

Workshop: Quantum Statistics, November 27 – December 1, 2006

Organizers: K. Audenaert, F. Verstraete and M. Wolf

Workshop: Causes of Ecological and Genetic Diversity,
December 10 – December 17, 2006

Organizers: R. Bürger and U. Dieckmann

Workshop: Langlands Duality and Physics, January 9 – January
20, 2007

Organizers: E. Frenkel, N. Hitchin, N. Nekrasov, J. Schwermer,
K. Vilonen

Workshop: Automorphic Forms, Geometry and Arithmetic,
February 11 – February 24, 2007

Organizers: S.S. Kudla, M. Rapoport, J. Schwermer

Workshop: Lieb-Robinson Bounds and Applications, February
20–February 24, 2007

Organizers: F. Verstraete, J. Yngvason
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