ESI

The Flow Completion of a Manifold with Vector Field

Franz W. Kamber Peter W. Michor

Vienna, Preprint ESI 918 (2000)

July 28, 2000

Supported by Federal Ministry of Science and Transport, Austria Available via http://www.esi.ac.at

THE FLOW COMPLETION OF A MANIFOLD WITH VECTOR FIELD

FRANZ W. KAMBER, PETER W. MICHOR

Erwin Schrödinger International Institute of Mathematical Physics, Wien, Austria

August 2, 2000

ABSTRACT. For a vector field X on a smooth manifold M there exists a smooth but not necessarily Hausdorff manifold $M_{\mathbb{R}}$ and a complete vector field $X_{\mathbb{R}}$ on it which is the universal completion of (M, X).

1. Theorem. Let $X \in \mathfrak{X}(M)$ be a smooth vector field on a (connected) smooth manifold M.

Then there exists a universal flow completion $j:(M,X)\to (M_{\mathbb R},X_{\mathbb R})$ of (M,X). Namely, there exists a (connected) smooth not necessarily Hausdorff manifold $M_{\mathbb R}$, a complete vector field $X_{\mathbb R}\in \mathfrak X(M_{\mathbb R})$, and an embedding $j:M\to M_{\mathbb R}$ onto an open submanifold such that X and $X_{\mathbb R}$ are j-related: $Tj\circ X=X_{\mathbb R}\circ j$. Moreover, for any other equivariant morphism $f:(M,X)\to (N,Y)$ for a manifold N and a complete vector field $Y\in X(N)$ there exists a unique equivariant morphism $f_{\mathbb R}:(M_{\mathbb R},x_{\mathbb R})\to (N,Y)$ with $f_{\mathbb R}\circ j=f$. The leave spaces M/X and $M_{\mathbb R}/X_{\mathbb R}$ are homeomorphic.

Proof. Consider the manifold $\mathbb{R} \times M$ with coordinate function s on \mathbb{R} , the vector field $\bar{X} := \partial_s \times X \in \mathfrak{X}(\mathbb{R} \times M)$, and let $M_{\mathbb{R}} := \mathbb{R} \times_{\bar{X}} M$ be the orbit space (or leaf space) of the vector field \bar{X} .

Consider the flow mapping $\mathrm{Fl}^{\bar{X}}: \mathcal{D}(\bar{X}) \to \mathbb{R} \times M$, given by $\mathrm{Fl}_t^{\bar{X}}(s,x) = (s+t,\mathrm{Fl}_t^X(x))$, where the domain of definition $\mathcal{D}(\bar{X}) \subset \mathbb{R} \times (\mathbb{R} \times M)$ is an open neighbourhood of $\{0\} \times (\mathbb{R} \times M)$ with the property that $\mathbb{R} \times \{x\} \cap \mathcal{D}(\bar{X})$ is an open interval times $\{x\}$.

For each $s \in \mathbb{R}$ we consider the mapping

$$j_s: M \xrightarrow{\operatorname{ins_t}} \{s\} \times M \subset \mathbb{R} \times M \xrightarrow{\pi} \mathbb{R} \times_{\bar{X}} M = M_{\mathbb{R}}.$$

¹⁹⁹¹ Mathematics Subject Classification. 37C10, 57R30.

Key words and phrases. flow completion, non-Hausdorff manifolds.

Supported by Erwin Schrödinger International Institute of Mathematical Physics, Wien, Austria. FWK was supported in part by The National Science Foundation under Grant No. DMS-9504084. PWM was supported by 'Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P 14195 MAT'.

Each mapping j_s is injective: A trajectory of \bar{X} can meet $\{s\} \times M$ at most once since it projects onto the unit speed flow on \mathbb{R} .

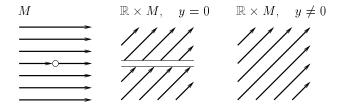
Obviously, the image $j_s(M)$ is open in $M_{\mathbb{R}}$ in the quotient topology: If a trajectory hits $\{s\} \times M$ in a point (s,x), let U be an open neighborhood of x in M such that $(-\varepsilon,\varepsilon) \times (s-\varepsilon,s+\varepsilon) \times U \subset \mathcal{D}(\bar{X})$. Then the trajectories hitting $(s-\varepsilon,s+\varepsilon) \times U$ fill a flow invariant open neighborhood which projects on an open neighborhood of $j_s(x)$ in $M_{\mathbb{R}}$ which lies in $j_s(M)$. This argument also shows that j_s is a homeomorphism onto its image in $M_{\mathbb{R}}$.

Let us use the mappings $j_s: M \to M_{\mathbb{R}}$ as charts. The chart change then looks as follows: For r < s the set $(j_s)^{-1}(j_r(M)) \subset M$ is just the open subset of all $x \in M$ such that $[0, s-r] \times \{(s,x)\} \subset \mathcal{D}(\bar{X})$, and $(j_s)^{-1} \circ j_r$ is given by Fl_{s-r}^X on this set. Thus the chart changes are smooth.

Consider the flow $(t,(s,x)) \mapsto (s+t,x)$ on $\mathbb{R} \times M$ which commutes with the flow of \bar{X} and thus induces a flow on the leave space $M_{\mathbb{R}} = \mathbb{R} \times_{\bar{X}} M$. Differentiating this flow we get a vector field $X_{\mathbb{R}}$ on $M_{\mathbb{R}}$.

The construction $(M,X) \mapsto (M_{\mathbb{R}}, X_{\mathbb{R}})$ is a functor from the category of smooth Hausdorff manifolds with vector-fields and smooth mappings intertwining the vector fields into the category of possibly non-Hausdorff manifolds with complete smooth vector fields and smooth mappings intertwining these fields. For a pair (M,X) with X a complete vector field the flow completion $(M_{\mathbb{R}}, X_{\mathbb{R}})$ is equivariantly diffeomorphic to (M,X) since then any of the charts $j_s: M \to M_{\mathbb{R}}$ is also surjective. From this the universal property follows. \square

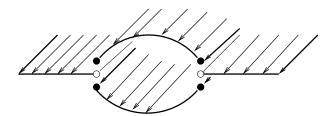
2. Example. Let $(M, X) = (\mathbb{R}^2 \setminus \{0\}, \partial_x)$. The trajectories of X on M and of \bar{X} on $\mathbb{R} \times M$ in the slices $y = \text{constant for } y = 0 \text{ and } y \neq 0 \text{ then look as follows:}$



The smooth manifold $M_{\mathbb{R}}$ then is \mathbb{R}^2 with the x-axis doubled: $(x,0)_+$ and $(x,0)_-$ cannot be separated for each $x \in \mathbb{R}$. The charts $j_s(M)$ all are diffeomorphic to $M = \mathbb{R}^2 \setminus \{0\}$ and contain $(x,0)_-$ for x < 0 and $(x,0)_+$ for x > 0. The charts $j_r(M)$ and $j_s(M)$ are glued together by the shift $x \mapsto x + s - r$. In this example $M_{\mathbb{R}}$ is not Hausdorff, but its Hausdorff quotient (given by the equivalence relation generated by identifying non-separable points) is again a smooth manifold and has the universal property described in (1).

3. Example. Let $(M,X) = (\mathbb{R}^2 \setminus \{0\} \times [-1,1], \partial_x)$. The trajectories of \bar{X} on $\mathbb{R} \times M$ in the slices y = constant for $|y| \leq 1$ and $|y| \geq 1$ then look as in the second and third illustration above. The flow completion $M_{\mathbb{R}}$ then becomes \mathbb{R}^2 with the part $\mathbb{R} \times [-1,1]$ doubled and the topology such that the points $(x,-1)_-$ and $(x,-1)_+$ cannot be separated as well as the points $(x,1)_-$ and $(x,1)_+$. The

flow is just $(x, y) \to (x + t, y)$:



In this example $M_{\mathbb{R}}$ is not Hausdorff, and its Hausdorff quotient is not a smooth manifold any more. There are two obvious quotient manifolds which are Hausdorff, the cylinder and the plane. Thus none of these two has the universal property of (1).

- 4. Non-Hausdorff smooth manifolds. We met second countable smooth manifolds which need not be Hausdorff. Let us discuss a little their properties. They are T_1 , since all points are closed; they are closed in a chart. The construction of the tangent bundle is by glueing the local tangent bundles. Smooth mappings and vector fields are defined as usual: Non separable pairs of points are mapped to non separable pairs. Vector fields admit flows as usual: These are given locally in the charts and are then glued together. If x and y are non separable points and if X is a vector field on the manifold, then for each t the points $\operatorname{Fl}_t^X(x)$ and $\operatorname{Fl}_t^X(y)$ are non separable. Theorem (1) can be extended to the category of not necessarily Hausdorff smooth manifolds and vector fields, without any change in the proof.
- 5. Remark. The ideas in this paper generalize to the setting of \mathfrak{g} -manifolds, where \mathfrak{g} is a finite dimension Lie group. Let G be the simply connected Lie group with Lie algebra \mathfrak{g} . Then one may construct the G-completion of a non-complete \mathfrak{g} -manifold. There are difficulties with the property T_1 , not only with Hausdorff. This was our original road which was inspired by [1]. We treat the full theory in [2]. We thought that the special case of a vector field is interesting in its own.

References

- Alekseevsky, D. V.; Michor, Peter W., Differential Geometry of g-manifolds., Differ. Geom. Appl. 5 (1995), 371-403, math.DG/9309214.
- [2] Kamber, F. W.; Michor, P. W., Completing Lie algebra actions to Lie group actions, in preparation.

Franz W. Kamber: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

 $E\text{-}mail\ address:$ kamber@math.uiuc.edu

P. W. MICHOR: INSTITUT FÜR MATHEMATIK, UNIVERSITÄT WIEN, STRUDLHOFGASSE 4, A-1090 WIEN, AUSTRIA; and: ERWIN SCHRÖDINGER INSTITUT FÜR MATHEMATISCHE PHYSIK, BOLTZMANNGASSE 9, A-1090 WIEN, AUSTRIA

 $E\text{-}mail\ address: \ \texttt{michor@pap.univie.ac.at}$