

Benjamin Miller

Vienna, Preprint ESI 2178 (2009)

September 14, 2009

Supported by the Austrian Federal Ministry of Education, Science and Culture Available via http://www.esi.ac.at

DICHOTOMY THEOREMS FOR COUNTABLY INFINITE DIMENSIONAL ANALYTIC HYPERGRAPHS

BENJAMIN MILLER

ABSTRACT. We give classical proofs, strengthenings, and generalizations of Lecomte's characterizations of the class of analytic ω -dimensional hypergraphs on Hausdorff spaces which have countable Borel chromatic number.

1. Introduction

An ω -dimensional (directed) hypergraph on a set X is a family $G \subseteq {}^{\omega}X$ of non-constant sequences. A (Y-) coloring of G is a function $c\colon X\to Y$ which sends sequences in G to non-constant sequences in ${}^{\omega}Y$. More generally, a homomorphism from an ω -dimensional hypergraph G on X to an ω -dimensional hypergraph H on Y is a function $\varphi\colon X\to Y$ which sends sequences in G to sequences in H.

In [3], Kechris-Solecki-Todorcevic isolated an acyclic $D_2(\Sigma_1^0)$ graph on $^{\omega}2$ that is minimal among all analytic graphs which do not have Borel ω -colorings. In [4], Lecomte proved that an analogous ω -dimensional hypergraph is minimal among all analytic ω -dimensional hypergraphs which do not have Borel ω -colorings.

Here we provide a classical proof of a slight strengthening of Lecomte's result, which allows us to provide new insight into the curious fact that the notion of minimality appearing in the ω -dimensional case is weaker than that appearing in the Kechris-Solecki-Todorcevic theorem. We also give generalizations of Lecomte's result to κ -Souslin graphs. We work in ZF except where stated otherwise.

2. Preliminaries

A topological space is *analytic* if it is the continuous image of a closed subset of ${}^{\omega}\omega$. Given a set $R\subseteq\prod_{i\in I}X_i$, we say that a sequence $(A_i)_{i\in I}$ is R-discrete if $A_i\subseteq X_i$ for all $i\in I$ and $\prod_{i\in I}A_i$ is disjoint from R.

Proposition 1. Suppose that $(X_i)_{i\in I}$ is a countable sequence of Hausdorff spaces, $R\subseteq \prod_{i\in I} X_i$ is analytic, and $(A_i)_{i\in I}$ is an R-discrete sequence of analytic sets. Then there exist a Borel set $S\subseteq \prod_{i\in I} X_i$

and an S-discrete sequence $(B_i)_{i\in I}$ of Borel sets such that $R\subseteq S$ and $A_i\subseteq B_i$ for all $i\in I$.

Proof. This is a straightforward generalization of the Novikov separation theorem (see, for example, Theorem 28.5 of [2]).

The restriction of G to a set $A \subseteq X$ is given by $G \upharpoonright A = G \cap {}^{\omega}A$. We say that A is G-discrete if $G \upharpoonright A = \emptyset$.

Proposition 2. Suppose that X is a Hausdorff space, G is an analytic ω -dimensional hypergraph on X, and $A \subseteq X$ is a G-discrete analytic set. Then there is a G-discrete Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof. By Proposition 1, there is a G-discrete sequence $(B_n)_{n\in\omega}$ of Borel subsets of X such that $A\subseteq B_n$ for all $n\in\omega$, and it easily follows that the set $B=\bigcap_{n\in\omega}B_n$ is as desired.

For each set $I \subseteq {}^{<\omega}\omega$, let G_I denote the ω -dimensional hypergraph on ${}^{\omega}\omega$ given by $G_I = \{(s {}^{\smallfrown} i {}^{\smallfrown} x)_{i \in \omega} \mid s \in I \text{ and } x \in {}^{\omega}\omega\}$. We say that I is dense if $\forall s \in {}^{<\omega}\omega \exists t \in I \ (s \sqsubseteq t)$.

Proposition 3. Suppose that $I \subseteq {}^{<\omega}\omega$ is dense and $A \subseteq {}^{\omega}\omega$ is a non-meager set with the Baire property. Then A is not G_I -discrete.

Proof. Fix $s \in {}^{<\omega}\omega$ such that A is comeager in \mathcal{N}_s , fix $t \in I$ such that $s \sqsubseteq t$, and fix $x \in {}^{\omega}\omega$ such that $t \cap i \cap x \in A$ for all $i \in \omega$. As $(t \cap i \cap x)_{i \in \omega} \in G_I$, it follows that A is not G_I -discrete.

Fix sequences $s_n \in {}^n\omega$ such that the set $I = \{s_n \mid n \in \omega\}$ is dense, and put $G_0(\omega) = G_I$.

3. Dichotomy theorems

The primary dichotomy in [4] concerns the existence of continuous homomorphisms from $G_0(\omega) \upharpoonright X_0$ to G, where X_0 denotes the dense G_δ set of sequences $x \in {}^\omega \omega$ such that $s_n \cap 0 \sqsubseteq x$ for infinitely many $n \in \omega$. We will establish the analogous result concerning the existence of continuous homomorphisms from $G_0(\omega) \upharpoonright X_z$ to G, where $z \in {}^\omega \omega$ is strictly increasing and X_z denotes the dense G_δ set of sequences $x \in {}^\omega \omega$ such that $x \upharpoonright n \in {}^n z(n)$ for infinitely many $n \in \omega$.

Note that if $z(n) > \max_{k \in m \in n} s_m(k)$ for all $n \in \omega$, then $X_0 \subseteq X_z$, so the inclusion map is a continuous homomorphism from $G_0(\omega) \upharpoonright X_0$ to $G_0(\omega) \upharpoonright X_z$. The following fact therefore yields the original result:

Theorem 4. Suppose that X is a Hausdorff space and G is an analytic ω -dimensional hypergraph on X. Then for all strictly increasing sequences $z \in {}^{\omega}\omega$, exactly one of the following holds:

- (1) There is a Borel ω -coloring of G.
- (2) There is a continuous homomorphism from $G_0(\omega) \upharpoonright X_z$ to G.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction, that $c: X \to \omega$ is an ω -universally Baire measurable coloring of G and $\varphi: X_z \to X$ is a Baire measurable homomorphism from $G_0(\omega) \upharpoonright X_z$ to G. Then the function $c_0 = c \circ \varphi$ is a Baire measurable coloring of $G_0(\omega) \upharpoonright X_z$. As X_z is comeager, there exists $n \in \omega$ such that $c_0^{-1}(\{n\})$ is non-meager and $G_0(\omega)$ -discrete, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can clearly assume that G is non-empty, in which case there are continuous surjections $\varphi_G : {}^{\omega}\omega \to G$ and $\varphi_X : {}^{\omega}\omega \to \text{dom}(G)$, where

$$dom(G) = \{ x \in X \mid \exists y \in G \exists n \in \omega \ (x = y(n)) \}.$$

Suppose that $n \in \omega$. A global (n-)approximation is a pair of the form $p = ((u_m^p)_{m \in n+1}, (v_m^p)_{m \in n+1})$, where $u_m^p : {}^m z(m) \to {}^m \omega$ and $v_m^p : {}^{< m} z(m) \to {}^m \omega$ for all $m \in n+1$, with the property that for all $l \in m \in n+1$, the following conditions are satisfied:

- (a) $\forall l \in m \in n + 1 \forall s \in {}^{l}z(l) \forall t \in {}^{m}z(m) \ (s \sqsubseteq t \Longrightarrow u_{l}^{p}(s) \sqsubseteq u_{m}^{p}(t)).$
- (b) $\forall l \in m \in n + 1 \forall s \in {}^{< l}z(l) \forall t \in {}^{< m}z(m)$ $((s \sqsubseteq t \text{ and } m - l = |t| - |s|) \Longrightarrow v_l^p(s) \sqsubseteq v_m^p(t)).$

Fix an enumeration $(p_k)_{k\in\omega}$ of the set of all global approximations.

An extension of a global m-approximation p is a global n-approximation q such that $u_l^p = u_l^q$ and $v_l^p = v_l^q$ for all $l \in m + 1$. In the special case that n = m + 1, we say that q is a one-step extension of p.

A local (n-)approximation is a pair of the form $l=(f^l,g^l)$, where $f^l: {}^n\omega \to {}^\omega\omega$ and $g^l: {}^{< n}\omega \to {}^\omega\omega$, with the property that

$$\forall k \in n \forall t \in {}^{n-(k+1)}\omega \ (\varphi_G \circ g^l(t) = (\varphi_X \circ f^l(s_k \hat{t} t))_{i \in \omega}).$$

We say that l is *compatible* with a global n-approximation p if the following conditions are satisfied:

- (i) $\forall m \in n + 1 \forall s \in {}^{m}z(m) \forall t \in {}^{n}\omega \ (s \sqsubseteq t \Longrightarrow u_{m}^{p}(s) \sqsubseteq f^{l}(t)).$
- (ii) $\forall m \in n + 1 \forall s \in {}^{< m} z(m) \forall t \in {}^{< n} \omega$ $((s \sqsubseteq t \text{ and } n - m = |t| - |s|) \Longrightarrow v_m^p(s) \sqsubseteq g^l(t)).$

We say that l is *compatible* with a set $Y \subseteq X$ if $\varphi_X \circ f^l[^n\omega] \subseteq Y$.

Suppose now that $Y \subseteq X$ is a Borel set, α is a countable ordinal, and $c: Y^c \to \omega \cdot \alpha$ is a Borel coloring of $G \upharpoonright Y^c$. Associated with each global n-approximation p is the set $L_n(p, Y)$ of local n-approximations which are compatible with both p and Y, as well as the set

$$A_n(p,Y) = \{ \varphi_X \circ f^l(s_n) \mid l \in L_n(p,Y) \}.$$

We say that p is Y-terminal if $L_{n+1}(q,Y) = \emptyset$ for all one-step extensions q of p. Let $T_n(Y)$ denote the set of Y-terminal global n-approximations, and put $T(Y) = \bigcup_{n \in \omega} T_n(Y)$.

Lemma 5. Suppose that $n \in \omega$, p is a global n-approximation, and $A_n(p, Y)$ is not G-discrete. Then p is not Y-terminal.

Proof of lemma. Fix local approximations $l_i \in L_n(p, Y)$ for $i \in \omega$ with the property that $(\varphi_X \circ f^{l_i}(s_n))_{i \in \omega} \in G$. Then there exists $x \in {}^{\omega}\omega$ such that $\varphi_G(x) = (\varphi_X \circ f^{l_i}(s_n))_{i \in \omega}$. Let l denote the local (n+1)-approximation given by $f^l(s \cap i) = f^{l_i}(s)$ for $i \in \omega$ and $s \in {}^{n}\omega$, $g^l(\emptyset) = x$, and $g^l(t \cap i) = g^{l_i}(t)$ for $i \in \omega$ and $t \in {}^{n}\omega$. As l is compatible with a one-step extension of p, it follows that p is not Y-terminal.

Proposition 2 and Lemma 5 ensure that for each Y-terminal global n-approximation p, there is a G-discrete Borel set $B_n(p, Y) \subseteq X$ such that $A_n(p, Y) \subseteq B_n(p, Y)$. Set

$$Y' = Y \setminus \bigcup \{B_n(p, Y) \mid n \in \omega \text{ and } p \in T_n(Y)\},$$

and for each $y \in Y \setminus Y'$, put

$$k(y) = \min\{k \in \omega \mid \exists n \in \omega \ (p_k \in T_n(Y) \text{ and } y \in B_n(p_k, Y))\}.$$

Define $c': (Y')^c \to \omega \cdot (\alpha + 1)$ by

$$c'(y) = \begin{cases} c(y) & \text{if } y \in Y^c \text{ and} \\ \omega \cdot \alpha + k(y) & \text{otherwise.} \end{cases}$$

Lemma 6. The function c' is a coloring of the hypergraph $G \upharpoonright (Y')^c$.

Proof of lemma. Suppose, towards a contradiction, that there exist $\beta \in \omega \cdot (\alpha + 1)$ and $(y_i)_{i \in \omega} \in G \upharpoonright (Y')^c$ such that $c'(y_i) = \beta$ for all $i \in \omega$. Then there exists $k \in \omega$ with $\beta = \omega \cdot \alpha + k$, thus p_k is Y-terminal and $(y_i)_{i \in \omega} \in G \upharpoonright B(p_k, Y)$, the desired contradiction.

Lemma 7. Suppose that p is a global approximation whose one-step extensions are all Y-terminal. Then p is Y'-terminal.

Proof of lemma. Fix $n \in \omega$ such that p is a global n-approximation. Suppose, towards a contradiction, that there is a one-step extension q of p for which there exists $l \in L_{n+1}(q, Y')$. Then $\varphi_X \circ f^l(s_{n+1}) \in B_{n+1}(q, Y)$ and $B_{n+1}(q, Y) \cap Y' = \emptyset$, the desired contradiction.

Recursively define Borel sets $Y_{\alpha} \subseteq X$ and Borel colorings $c_{\alpha} \colon Y_{\alpha}^{c} \to \omega \cdot \alpha$ of $G \upharpoonright Y_{\alpha}^{c}$ for $\alpha \in \omega_{1}$ by

$$(Y_{\alpha}, c_{\alpha}) = \begin{cases} (X, \emptyset) & \text{if } \alpha = 0, \\ (Y'_{\beta}, c'_{\beta}) & \text{if } \alpha = \beta + 1, \text{ and} \\ (\bigcap_{\beta \in \alpha} Y_{\beta}, \lim_{\beta \to \alpha} c_{\beta}) & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

As there are only countably many approximations, there exists $\alpha \in \omega_1$ such that $T(Y_{\alpha}) = T(Y_{\alpha+1})$.

If the unique global 0-approximation p^0 is Y_{α} -terminal, then the fact that $A(p^0, Y_{\alpha}) = \text{dom}(G) \cap Y_{\alpha}$ ensures that c_{α} extends to a Borel $(\omega \cdot \alpha + 1)$ -coloring of G, thus there is a Borel ω -coloring of G.

Otherwise, by repeatedly applying Lemma 7 we obtain one-step extensions p^{n+1} of p^n for all $n \in \omega$, none of which are Y_{α} -terminal. For each $k \in \omega$, let $X_{z,k}$ denote the dense G_{δ} set of sequences $x \in {}^{\omega}\omega$ with $x \upharpoonright n \in {}^{n}z(k+n+1)$ for infinitely many $n \in \omega$. Define continuous functions $\psi_X \colon X_z \to {}^{\omega}\omega$ and $\psi_k \colon X_{z,k} \to {}^{\omega}\omega$ for $k \in \omega$ by

$$\psi_X(x) = \lim_{n \to \omega} u^{p^n}(x \upharpoonright n) \text{ and } \psi_k(x) = \lim_{n \to \omega} v^{p^{k+n+1}}(x \upharpoonright n),$$

where the limits are taken over all $n \in \omega$ for which the maps are defined.

To see that $\varphi_X \circ \psi_X$ is a homomorphism from $G_0(\omega) \upharpoonright X_z$ to G, it is enough to show that $\varphi_G \circ \psi_k(x) = (\varphi_X \circ \psi_X(s_k \hat{\ } i^{\smallfrown} x))_{i \in \omega}$ for all $n \in \omega$ and $x \in X_{z,k}$. By the continuity of φ_G and φ_X , it is enough to show that for every open neighborhood U of $\psi_k(x)$ and every open neighborhood V of $(\psi_X(s_k \hat{\ } i^{\smallfrown} x))_{i \in \omega}$, there exists $(y, (y_i)_{i \in \omega}) \in U \times V$ with $\varphi_G(y) = (\varphi_X(y_i))_{i \in \omega}$. Towards this end, fix $m \in \omega$ and an open set $W \subseteq {}^m({}^\omega\omega)$ such that $(\psi_X(s_k \hat{\ } i^{\smallfrown} x))_{i \in m} \in W$ and $W \times {}^\omega({}^\omega\omega) \subseteq V$. Then there exists $n \in \omega$ such that $s_k \hat{\ } i^{\smallfrown} (x \upharpoonright n) \in {}^{k+n+1} z(k+n+1)$ for all $i \in m$, $\mathcal{N}_{\psi_k(x)} \subseteq U$, and $\prod_{i \in m} \mathcal{N}_{\psi_X(s_k \hat{\ } i^{\smallfrown} x)) \upharpoonright (k+n+1)} \subseteq W$. Fix a local approximation $l \in L(p^{k+n+1}, Y_\alpha)$. Then the points $y = g^l(x \upharpoonright n)$ and $y_i = f^l(s_n \hat{\ } i^{\smallfrown} (x \upharpoonright n))$ for $i \in \omega$ are as desired.

The following fact implies Lecomte's result that $G_0(\omega) \upharpoonright X_z$ cannot be replaced with $G_0(\omega)$ in the statement of Theorem 4:

Proposition 8. Suppose that $z \in {}^{\omega}\omega$ is strictly increasing. Then there is no continuous homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X_z$.

Proof. We will use the following straightforward corollary of the proof of Theorem 3 of [4]:

Lemma 9 (Lecomte). Suppose that $\varphi \colon {}^{\omega}\omega \to {}^{\omega}\omega$ is a continuous homomorphism from $G_0(\omega)$ to $G_0(\omega)$. Then there exist a co-infinite set $I \subseteq \omega$ and $y_0 \in {}^{\omega}\omega$ such that $\forall y \in {}^{\omega}\omega$ $(y \upharpoonright I = y_0 \upharpoonright I \Longrightarrow y \in \varphi[{}^{\omega}\omega])$.

Suppose now, towards a contradiction, that $\varphi \colon {}^{\omega}\omega \to X_z$ is a continuous homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X_z$. Fix $I \subseteq \omega$ and $y_0 \in {}^{\omega}\omega$ as in Lemma 9, let $(i_k)_{k\in\omega}$ denote the strictly increasing enumeration of I^c , and define $y \in {}^{\omega}\omega$ by

$$y(n) = \begin{cases} y_0(n) & \text{if } n \in I \text{ and} \\ z(i_{k+1}) & \text{if } n = i_k. \end{cases}$$

Then $y \upharpoonright n \notin {}^{n}z(n)$ for all $n > i_0$, so $y \notin X_z$, a contradiction.

As originally noted by Lecomte, there is nevertheless a weak version of Theorem 4 in which we can replace $G_0(\omega) \upharpoonright X_z$ with $G_0(\omega)$:

Theorem 10 (Lecomte). Work in ZFC. Suppose that X is a Hausdorff space and G is an analytic ω -dimensional hypergraph on X. Then exactly one of the following holds:

- (1) There is a Borel ω -coloring of G.
- (2) There is a Baire measurable homomorphism from $G_0(\omega)$ to G.

Proof. The proof of Theorem 4 shows that (1) and (2) are mutually exclusive. To see that at least one of these holds, fix a strictly increasing sequence $z \in {}^{\omega}\omega$. By Theorem 4, it is enough to show that there is a Baire measurable homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X_z$. As X_z is comeager, every function from ${}^{\omega}\omega$ whose support is disjoint from X_z is Baire measurable, so it is enough to show that for all $x \in {}^{\omega}\omega$, there is a homomorphism from $G_0(\omega) \upharpoonright [x]_{E_0(\omega)}$ to $G_0(\omega) \upharpoonright X_z$. As the sets of the form X_w are $E_0(\omega)$ -invariant and together cover ${}^{\omega}\omega$, this follows from Theorem 4.

Theorem 4, Proposition 8, and Theorem 10 lead to the following:

Question 11 (Lecomte). Can the homomorphism in part (2) of Theorem 10 be taken to be Borel? Equivalently, is there a Borel homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X_z$ for every (or some) strictly increasing sequence $z \in {}^{\omega}\omega$?

In light of Theorem 10, perhaps the most natural attempt at producing a negative answer to Question 11 is to find a finer Polish topology τ on ${}^{\omega}\omega$, compatible with the underlying Borel structure of ${}^{\omega}\omega$, with the property that for no τ -comeager set $X \subseteq {}^{\omega}\omega$ is there a τ -Baire measurable homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X$. Similarly, one could look for a σ -finite measure μ on ${}^{\omega}\omega$ with the property that for no μ -conull set $X \subseteq {}^{\omega}\omega$ is there a μ -measurable homomorphism from $G_0(\omega)$ to $G_0(\omega) \upharpoonright X$.

Theorem 4 immediately implies that neither strategy can succeed: simply choose $z \in {}^{\omega}\omega$ such that X_z is τ -comeager or μ -conull, and

proceed as in the proof of Theorem 10. In fact, by combining this with a straightforward recursive construction, we obtain the following:

Theorem 12. Work in ZFC + add(null) = \mathfrak{c} . Suppose that X is a Hausdorff space and G is an analytic ω -dimensional hypergraph on X. Then exactly one of the following holds:

- (1) There is a Borel ω -coloring of G.
- (2) There is a homomorphism from $G_0(\omega)$ to G which is universally measurable and ω -universally Baire measurable.

We close by noting generalizations of Lecomte's results to broader classes of definable sets. Suppose that κ is an infinite aleph. A topological space is κ -Souslin if it is the continuous image of a closed subset of ${}^{\omega}\kappa$. By removing our use of Proposition 1 from the proof of Theorem 4 and replacing ω with κ as appropriate, we obtain:

Theorem 13. Suppose that κ is an infinite aleph, X is a Hausdorff space, and G is a κ -Souslin ω -dimensional hypergraph on X. Then for all strictly increasing $z \in {}^{\omega}\omega$, at least one of the following holds:

- (1) There is a κ -coloring of G.
- (2) There is a continuous homomorphism from $G_0(\omega) \upharpoonright X_z$ to G.

By employing techniques of Kanovei [1], we can do even better:

Theorem 14. Suppose that κ is an infinite aleph, X is a Hausdorff space, and G is a κ -Souslin ω -dimensional hypergraph on X. Then for all strictly increasing $z \in {}^{\omega}\omega$, at least one of the following holds:

- (1) There is a κ^+ -Borel κ -coloring of G.
- (2) There is a continuous homomorphism from $G_0(\omega) \upharpoonright X_z$ to G.

Question 15. Is there a classical proof of Theorem 14?

References

- [1] V. Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. *Fund. Math.*, 183–201, **154** (2), 1997.
- [2] A.S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [3] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. *Adv. Math.*, 1–44, **141** (1), 1999.
- [4] D. Lecomte. A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension. To appear in *Trans. Amer. Math. Soc.*