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Dispersive PDEs

We consider nonlinear dispersive equations of the form

i∂tu(t, x) + Lu(t, x) = p (u(t, x), u(t, x))

u(0, x) = v(x), (t, x) ∈ R+ ×Td

where L is a differential operator and p is a polynomial nonlinearity.

Assume local wellposedness of the problem on the finite time
interval ]0,T ], T <∞ for v ∈ Hn.
Aim: give a numerical approximation of u at low regularity
when n is small.

NLS: L = ∆ and p(u, u) = |u|2u.

KdV: L = i∂3
x and p(u, u) = i∂x(u2).
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Decorated trees approach

Mild solution given by Duhamel’s formula:

u(t) = e itL︸︷︷︸
edge

v + e itL︸︷︷︸
edge

(−i
∫ t

0
e−iξL︸ ︷︷ ︸

edge

p (u(ξ), u(ξ)) dξ)

Definition of a character Π : Decorated trees → Iterated integrals

1 e itLv = (ΠT0)(t, v), T0 =

2 −ie itL
∫ t
0 e−iξLp

(
e iξLv , e−iξLv

)
dξ = (ΠT1)(t, v),

T1 =
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B-series type expansion

Solution U r up to order r can be represented by a series:

U r (t, v) =
∑
T∈V r

Υp(T )

S(T )
(ΠT )(t, v),

V r : decorated trees of order r .
S(T ): symmetry factor.
Υp: elementary differentials.
Error of order

O
(
tr+1q(v)

)
for some polynomial q.
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Treatment of oscillations

The principal oscillatory integral takes the form

I1(t,L, v , p) =

∫ t

0
Osc(ξ,L, v , p)dξ

with the central oscillations Osc given by

Osc(ξ,L, v , p) = e−iξLp
(
e iξLv , e−iξLv

)
.

In general it will be

Osc(ξ,L, v , p) = e−iξLp
(
e iξ(L+L1)q1(v), e−iξ(L+L2)q2(v)

)
.
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Various approaches

Classical Methods:

exponential method: Osc(ξ,L, v , p) ≈ e−iξLp(v , v)

splitting method: Osc(ξ,L, v , p) ≈ p(v , v)

Resonance as a computational tool:

Osc(ξ,L, v , p) =
[
e iξLdompdom (v , v)

]
plow(v , v) +O

(
ξLlowv

)
.

Here, Ldom denotes a suitable dominant part of the high frequency
interactions and

Llow = L − Ldom
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Experiments

Comparison of classical and resonance based schemes for the
Schrödinger equation for smooth (C∞ data) and non-smooth (H2

data) solutions.
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Experiments

Comparison of classical and resonance based schemes for the KdV
equation with smooth data in C∞.
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Fourier iterated integrals

Mild solution given by Duhamel’s formula in Fourier (P(k)↔ L ):

ûk(t) = e itP(k)︸ ︷︷ ︸
edge

v̂k + e itP(k)︸ ︷︷ ︸
edge

(−i
∫ t

0
e−iξP(k)︸ ︷︷ ︸

edge

pk (u(ξ), u(ξ)) dξ)

Definition of a character Π̂ : Decorated trees → Iterated integrals

1 e itP(k) = (Π̂T0)(t), T0 =
k

2 −ie itP(k)
∫ t
0 e−iξ(P(k)−P(−k1)+P(k2)+P(k3))dξ = (Π̂T1)(t),

T1 =

k1
k3

k2
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Fourier B-series type expansion

Resonance scheme U r
k of order r with regularity n (initial data):

U r
k(τ, v) =

∑
T∈V r

k

Υp(T )(v)

S(T )

(
Π̂r
nT
)

(τ)

V rk : decorated trees of order r with frenquency k .
Character Π̂r

n resonance approximation of Π̂.

Examples of decorated trees for NLS (r = 2):

k

k1
k3

k2 k4

k1 k2

k3

k5 k4

k1 k2

k3

k5
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A practical example

The iterated integral associated to T =

k1
k2

k3

is given by:

(Π̂T )(t) =

∫ t

0
e iξ(−k

2−k2
1 +k2

2 +k2
3)dξ, k = −k1 + k2 + k3

One has

−k2 − k2
1 + k2

2 + k2
3 = Ldom︸︷︷︸

−2k2
1

+ Llow︸︷︷︸
order one

Taylor expansion of Llow:

(Π̂T )(t) =
e−2itk2

1 − 1
−2ik2

1︸ ︷︷ ︸
(Π̂r

nT )(t)

+O
(
tLlow

)
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Local Error Analysis

Main idea is to single out oscillations:∫ t

0
e iξP(k)dξ =

e itP(k) − 1
iP(k)

Butcher-Connes-Kreimer coproduct ∆

∆

k4

k1 k2

k3

k5

=

k4
`

k5

⊗
k1

k3
k2

+ · · · , ` = −k1 + k2 + k3

Integrals
∫ t
0 ξ

`e iξP(k)dξ → deformed BCK coproduct ∆̂ (SPDEs).
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Main result

Birkhoff type factoriation:

Π̃r
n =

(
Π̂r
n ⊗ (Q ◦ Π̂r

nA·)(0)
)

∆̂.

where A is an antipode and Q is a projector.

Theorem (B., Schratz 2020)

For every T ∈ V rk(
Π̂T − Π̂r

nT
)

(τ) = O
(
τ r+1Lrlow(T , n)

)
.

where Lrlow(T , n) involves all lower order frequency interactions.
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Family of schemes Π̂r
n

nnrlow(T )

Low Regularity
Resonance scheme

Minimum Regularity
Resonance scheme

Classical Exponential
Integrator type scheme

nrexp(T )

deg(Lrlow(T , n))

nrlow(T )

nrexp(T )
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Perspectives

B-series→ Regularity Structures→ PDEs Numerical Schemes
New example of a deformation of the BCK coproduct.
Birkhoff type factorisation as in SPDEs see (B., Ebrahimi-Fard
2020).
Backward error analysis for the scheme.
Structure preservation.
Generalisation to more general domains not only Td and wave
equations.
Potential connection with the study of dispersive (S)PDEs.


