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Dispersive PDEs

We consider nonlinear dispersive equations of the form

iOru(t, x) + Lu(t,x) = p(u(t, x), u(t, x))
u(0,x) = v(x), (t,x)eR; x T

where L is a differential operator and p is a polynomial nonlinearity.

@ Assume local wellposedness of the problem on the finite time
interval 10, T], T < oo for v € H".

@ Aim: give a numerical approximation of u at low regularity
when n is small.

NLS: £ = A and p(u, @) = |u|?u.
KdV: £ = id3 and p(u, 1) = idx(u?).



Decorated trees approach

Mild solution given by Duhamel’s formula:

t

u(t) = "5 v+ (=i [ e p(u(€), u(¢)) dE)

v 0
edge | edge | ~—o—
edge |

Definition of a character I : Decorated trees — lIterated integrals
@ oty =(NTo)(t,v), To=|

Q@ —iel [T e lp (elLy, e EEY) de = (MTy)(t, v),

T =



B-series type expansion

Solution U" up to order r can be represented by a series:

OEDS TSP((TT))(H TY(E V),

Teyr

V' decorated trees of order r.
S(T): symmetry factor.

TP: elementary differentials.
Error of order

O (tqu(v))

for some polynomial q.



Treatment of oscillations

The principal oscillatory integral takes the form

Zi(t, L, v,p) = /Ot Osc(&, L, v, p)dE
with the central oscillations Osc given by
Osc(&, L, v, p) = e €4 p (e’-“v, e*’fLV) )
In general it will be

Osc(&, L, v,p) = e "p (e’f(uﬁl)ql(\/), e_’f(HLZ)qz(V)) :



Various approaches

Classical Methods:

o exponential method: Osc(¢, £, v, p) = e ¢4 p(v, V)
e splitting method:  Osc(&, £, v, p) = p(v,V)

Resonance as a computational tool:
Osc(€, £,v,p) = | pyom (v, 7)| Pow(V, V) + O (€Liowv ).

Here, Lq4om denotes a suitable dominant part of the high frequency
interactions and
[’Iow =L- 'Cdom



Experiments

Comparison of classical and resonance based schemes for the
Schrddinger equation for smooth (C* data) and non-smooth (H?
data) solutions.
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Experiments

Comparison of classical and resonance based schemes for the KdV
equation with smooth data in C*.
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Fourier iterated integrals

Mild solution given by Duhamel’s formula in Fourier (P(k) <> L ):

i(t) = PR g, 4 &P (—j / e P py (u(€), T(E)) )
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Definition of a character [1: Decorated trees — Iterated integrals
@ P — (AT)(1), To=1
@ —ieltP(k) [T e=iE(P()=P(—k)+P)+P()) de = (ATy)(t),
@%®

Ty



Fourier B-series type expansion

Resonance scheme U of order r with regularity n (initial data):

Up(rov) = Y TPS((TT)gv) (f27) ()

Tev]

e V/: decorated trees of order r with frenquency k.

@ Character I/ resonance approximation of I1.

Examples of decorated trees for NLS (r = 2):




A practical example

@%®
The iterated integral associated to T = is given by:

t
(A7) = [ SR HHEDag k= ko + ko
0

One has

—K? — k4 K3+ k2 = Laom+ Liow
~— =~

_2k12 order one

Taylor expansion of Lg,:



Local Error Analysis

Main idea is to single out oscillations:

/t eifP(k)df _ eitP(k) _ 1
0 Pk)

Butcher-Connes-Kreimer coproduct A

=—ki + ko + k3

Integrals fot ¢le’P(k) d¢ — deformed BCK coproduct A (SPDEs).



Main result

Birkhoff type factoriation:

~ ~

fir = (ﬁ; ®(Qo ﬁ;A.)(O)) A.

where A is an antipode and Q is a projector.

Theorem (B., Schratz 2020)

For every T €V,
(ﬁ T - ﬁ;T) (r) = O (+"1LL (T, n)).

where L}, (T, n) involves all lower order frequency interactions.




Family of schemes 1

deg(LL (T, n))
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Perspectives

@ B-series — Regularity Structures — PDEs Numerical Schemes
@ New example of a deformation of the BCK coproduct.

@ Birkhoff type factorisation as in SPDEs see (B., Ebrahimi-Fard
2020).

@ Backward error analysis for the scheme.
@ Structure preservation.

o Generalisation to more general domains not only T¢ and wave
equations.

@ Potential connection with the study of dispersive (S)PDEs.



