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DIMER MODEL: DEFINITION
» Planar, bipartite graph G = (V =B UW, E).

> Dimer configuration M: subset of edges s.t. each vertex is
incident to exactly one edge of M ~» M(G).

> Positive weight function on edges: v = (Ve)ecE-
» Dimer Boltzmann measure (G finite):

[T ve

YMeM(G), Paimer(M) = sz—(Gv)

where Zgimer(G, v) is the dimer partition function.
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DIMER MODEL: KASTELEYN MATRIX

» Kasteleyn matrix (Percus-Kuperberg version)
- Edge wb ~» angle ¢, s.t. for every face wy, by, ..., Wy, by:

k
D Gupy = buy) = (k= D mod 2.
j=1

- K is the corresponding twisted adjacency matrix.

Vup€®®  if w~b
Kw,b — { wb

0 otherwise.



DIMER MODEL: FOUNDING RESULTS
> Assume G finite.
THEOREM ([KASTELEYN'61] [KUPERBERG'8])
Zdimer(G, v) = | det(K)|.

THEOREM (KENnYON'g7)
Let & = {1 = wiby,...,€, = w,b,} be a subset of edges of G, then:

]pdimer(el’ ceey en) = |(ﬁ KWj,bj) det(K_1)5|,
Jj=1

where (K V)¢ is the sub-matrix of K™! whose rows/columns are indexed
by black/white vertices of €.

» G infinite: Boltzmann measure ~» Gibbs measure

- Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.'06]
- Non-periodic [dT’07], [Boutillier-dT°10], [B-dT-Raschel'19]



DIMER MODEL: PERIODIC CASE

> Assume G is bipartite, infinite, Z?-periodic.

» Exhaustion of G by toroidal graphs: (G,) = (G/nZ?).



DIMER MODEL: PERIODIC CASE

» Fundamental domain: Gy

> Let K; be the Kasteleyn matrix of fundamental domain Gy.
> Multiply edge-weights by z,z7,w,w™! — K;(z,w).

» The characteristic polynomial is:
P(z,w) = detKi(z, w).

Example: weight function v =1, P(z,w) =5-2z — % -W - %
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DIMER MODEL: SPECTRAL CURVE

» The spectral curve:
€ ={(z,w) € (C"H?: P(z,w) = 0)}.

> Amoeba: image of C through the map (z,w) — (log|z|, log |w]).

Amoeba of the square-octagon graph



DIMER MODEL AND HARNACK CURVES N_A/
C_

-

THEOREMS 7 \—~ <—
> Spectral curves of bipartite dimers O

[Ke.-Ok.-Sh.06] [Ke.-Ok.06] . .
— Harnack curves with points on ovals.

Spectral curves of isoradial, bipartite dimer models with critical

. [Kenyon-Okounkov06]
weights [Kenyon 02] —> Harnack curves of genus 0.

L. . i . [Goncharov-Kenyon '13]
Spectral curves of minimal, bipartite dimers —

Harnack curves with points on ovals.

Explicit (—) map

[Fock’15] Explicit («—) map for all algebraic curves.
(no check on positivity).



DIMER MODEL AND HARNACK CURVES OF GENUS I

THEOREM ([BouTiLLIER-CIMASONI-DT 20])

Spectral curves of minimal, bipartite dimer models with Fock’s weights
“—>

Harnack curves of genus 1 with a point on the oval.



QUAD—GRAPH, TRAIN-TRACKS

> Infinite, planar, embedded graph G; embedded dual graph G*.

> Corresponding quad-graph G°, train-tracks.
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ISORADIAL GRAPHS

> An isoradial embedding of an infinite, planar graph G is an
embedding such that all of its faces are inscribed in a circle of
radius 1, and such that the center of the circles are in the interior
of the faces [Duffin] [Mercat] [Kenyon].

> Equivalent to: the quad-graph G° is embedded so that of all its
faces are rhombi.

THEOREM (KENYON-SCHLENCKER 04)

An infinite planar graph G has an isoradial embedding iff

BN







ISORADIAL EMBEDDINGS







MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).




MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).

> A bipartite, planar graph G is minimal if

==

[Thurston’04] [Gulotta’08] [Ishii-Ueda’ll] [Goncharov-Kenyon'13]




IMMERSIONS OF MINIMAL GRAPHS
> A minimal immersion of an infinite planar graph G is an
immersion of the quadgraph G° such that:

- all of the faces are rhombi (flat or reversed)
. -
\’ ‘r O
'/ ,‘ \ .
¢ «

- the immersion is flat: the sum of the rhombus angles around every
vertex and every face is equal to 2.

PrOPOSITION (BouTiLLiER-CiMAsONI-DT 1)
The flatness condition is equivalent to :

- around every vertex there is at most one reversed rhombus
- around every face, the cyclic order of the vertices differ by at most
disjoint transpositions in the embedding and in the immersion.

THEOREM (BoutiLLIER-CiMASONI-DT'1Q)

An infinite, planar, bipartite graph G has a minimal immersion iff it is
minimal.



DIMER VERSION OF FOCK’S WEIGHTS

> Tool 1. Jacobi’s (first) theta function.
- Parameter g = €, 3(1) > 0, A(q) = nZ + n7Z, T(q) = C/A.

0(z) = 2q% ) \(~1)'q""*V sin(2n + 1)z,

n=0
- Allows to represent A(qg)-periodic meromorphic functions.
- 0(z) ~ Zq% sin(z) as g — O.

> Tool 2. Minimally immersed, bipartite, minimal graph G.
- each train-track T is assigned direction e,

- each edge e = wb is assigned train-track directions eZe 2B and a
half-angle 8 — a € [0, 7).



DIMER VERSION OF FOCK'S ADJACENCY MATRIX
» Tool 3. Discrete Abel map [Fock], D € (R/aZ)V(©C")
- Fix face fy and set D(fy) = 0,

- o: degree -1, o: degree 1, faces: degree O,

- when crossing T: increase/decrease D by ar accordingly.

> Point ¢ € §T+R.

> Fock’s adjacency matrix

08 — )

K, = { 6(t + D(b) - B)é(t + D(w) — ) Ww~b

0 otherwise.



DIMER VERSION OF FOCK’S ADJACENCY MATRIX

LEMMA ([BouTiLLIER-CiMASONI-DT 20])

Under the above assumptions, the matrix K© is a Kasteleyn matrix for
a dimer model (positive weights) on G.



FUNCTIONS IN THE KERNEL OF K(t)

> Define g : V° xV°xC — C

- gl =1,

I~ w, gl ) = 2wy = Bu + ¢+ D(w))

s

H(u @)
-1 _ Bu—t-Db)
- If b, © ©) ,
f~b, g w) =g (u w™ H(u ”
where e%? is the direction of the tt crossing the edge.

- If distance > 2, take product along path in G°.




PROPERTY OF THE FUNCTION gV

LEMMA ([Fock'15] [BouTiLLIER-CimMASONI-DT 20])

- The function g is well defined.
- The function g¥ is in the kernel of K©:

Yw e W, x e V°, Z K(’)b g[(fz((”) =

b:b~w
Proor.

Weierstrass identity: s,t € T(qg), a,b,c € C,

6(b — a) 6?(u+s—a—b)+ 6(c - b) 9(u+s—b—c)+
0(s —a)d(s —b)O(u—a)d(u—>b) 6(s—b)d(s—c)b(u—>b)(u—-c)
N 6(a—rc) 9(u+s—c—a):

0(s — c)8(s — a) O(u — c)0(u — a)




EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

» Assume G is Z%-periodic. Define the map v,

¥ : T(q) — C
u e ) = (Z(w), ww))

where Z(1) = Zpg bo+1,0)(1), W) = py.by+(0,1)(12).

bo +(0,1)
[ ]

@ [ ]
g hg +(1.0)




EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

ProrosiTION ([B-C-pT’20])

The map  is an explicit birational parameterization of the spectral
curve C of the dimer model with Kasteleyn matrix K.

The real locus of € is the image under y of the set R/nZ x {0, 57},
where the connected component with ordinate %T is bounded and the
other is not.

(The spectral curve is independent of t).

[NIE]

0 2 X = =X= X=X 2 XXX~

T(q)




GIBBS MEASURES FOR BIPARTITE DIMER MODELS

THEOREMS (KENYON-OKOUNKOV-SHEFFIELD 06)

- The dimer model on a Z?-periodic, bipartite graph has a
two-parameter family of ergodic Gibbs measures indexed by the
slope (h,v), i.e., by the average horizontal/vertical height change.

- The latter are obtained as weak limits of Boltzmann measures with
magnetic field coordinates (By, By).

- The phase diagram is given by the amoeba of the spectral curve C.

¥

frozen

frozen




LLocAL EXPRESSION FOR (GIBBS MEASURES, GENUS I
Suppose ¢ fixed. Omit it from the notation.

THEOREM (BouTiLLIER-CIMASONI-DT 20)

The 2-parameter set of EGM of the dimer model with Kasteleyn matrix
K'is (P“),,ep, where Y subset of edges € = {e; = wiby,...,en = wyby},

n

Poer,--ven) = ([ | Kuyay) det(a)e,
j=1
i6'(0)

where Vbe B, we W, A =
W 2 C:

. Zhw(w)du.

Moreover, when uy

- is the unique point corresponding to the top boundary of D, the
dimer model is gaseous,

- is in the interior of D, the dimer model is liquid,

- is a point corresponding to a cc of the lower boundary, the model
is solid.



LLOoCAL EXPRESSIONS FOR ERGODIC GIBBS MEASURES, GENUS 1

> Domain D. Top boundary identified with a single point

D

71N

. Each connected component is identified with a single point
> Confours of integration.

uo
Uy Uy Cuo
C b,(:v C b,?v / b,w
K A
220}
o
COROLLARY

The slope of the Gibbs measure P* is:

1 d
- — [ Zq du,
ol oy dig 08 WU,V

uo Lo

d
- — [ Zq du.
ol dig (08 2l



IDEA OF THE PROOF

> Proof 1. Using [C-K-P], [K-O-S] the Gibbs measure P? with
magnetic field coordinates B = (By, B)) has the following
expression on cylinder sets:

k
P ey, ex) = ([ | Kuys,) det(aPye,
j=1

where
AP _ Q(Z’W)b»wz—mw—n dw dz

brmmw = | P(z,wW) 2inw 2inz’
- Perform one integral by residues.
- Do the change of variable u — ¥(u) = (z(u), w(u)).

- Non-trivial cancellation !



IDEA OF THE PROOF

> Proof 2. Show that for every ug, A* is an inverse of K.
- Use Weierstrass identity.
- Show that the contours of integration are such that one has 1 on
the diagonal.

Use uniqueness statements of inverse operators.



CONSEQUENCES

> Suitable for asymptotics.

> Explicit local expressions for edge probabilities.



CONNECTION TO PREVIOUS WORK

> Genus 0. [Kenyon'02].
> Genus 1. Two specific cases were handled before:

- the bipartite graph arising from the Ising model
[Boutillier-dT-Raschel 20]

- the Z®-Dirac operator [dT"18] ~» massive discrete holomorphic
functions.



PERSPECTIVES

> 2-parameter family of Gibbs measures for non-periodic graphs.

Missing: every finite, simply connected subgraph of a minimal
immersion can be embedded in a bipartite, Z2-periodic minimal
immersion.

> Extension to genus g > 1.

- [Fock] gives a candidate for the dimer model.
- Weierstrass identity ~» Fay’s trisecant identity.



