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Let G a (proto)-algebraic monoid. The algebra C[G] of
polynomial functions on G inherits a coproduct
A : C[G] — C[G] ® C[G] ~ C[G x G] such that:

Vfe C[G],¥x,y € G, A(f)(x,y) = f(xy).

This makes C[G] a bialgebra. It is a Hopf algebra if, and only if,
G is a group. Moreover, G is isomorphic to the monoid
char(C[G]) of characters of C[G].

Characters of a bialgebra B

A character of a bialgebra B is an algebra morphism
A : B— C. The set of characters char(B) is given an
associative convolution product:

Axp=mgo(A®u)oA.
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Let G and G’ be two (proto)-algebraic monoids, such that G’
acts polynomialy on G by monoid endomorphisms (on the
right). Then:

Interacting bialgebras
@ A= (C[G],ma,A) is a bialgebra.
@ B = (C[G], mg,0) is a bialgebra.
© B coacts on Aby a coactionp: A— AR B.
© Ais a bialgebra in the category of B-comodules.
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In other words, for any f, g € A:

p(fg) = p(f)p(9),
p(1a) =1a®1p,
(<€A®Id5) o p(f) = 8A(f)1B,
(A®Id) o p(f) = M 324 0 (p® p) © A(f).
where
A® ., A®8
1,3,24 - { AARQa@®Waz®as — a®az® aray.
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The algebra C[X]
The group (C*, x) acts on (C, +) by group automorphisms.
@ A= (C[X],m,A) with A(X) =X®1+1® X, is a Hopf
algebra.
@ B = (C[X,X""],m,s) with 6(X) = X® X, is a Hopf
algebra.

@ p(X) = X ® X defines a coaction of Bon A, and Ais a
bialgebra in the category of B-comodules.
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Rooted trees
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The algebra C[X]
The monoid (C, x) acts on (C, +) by group automorphisms.
@ A= (C[X],m,A) with A(X) =X®1+1® X, is a Hopf
algebra.
@ B = (C[X,X~"],m,d) with 6(X) = X ® X, is a bialgebra.
@ p(X) = X ® X defines a coaction of Bon A, and Ais a
bialgebra in the category of B-comodules.
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From now, we shall consider only examples where A = B as
algebras: we obtain objects (A, m, A, §), with one product and
two coproducts. The coaction p and the coproduct ¢ are equal.
These objects will be called double bialgebras.

The algebra C[X]

(A,m) = (B, m) = (C[X], m), where m is the usual product of
polynomials, and the coproducts are given by:

AX)=X®1+1®X,
5(X) = X®X.

Then (C[X], m, A, ) is a double bialgebra.

Loic Foissy Cointeracting bialgebras



Definition

A first example: the polynomial algebra C[X]
Rooted trees

Graphs

Cointeracting bialgebras

From now, we shall consider only examples where A = B as
algebras: we obtain objects (A, m, A, §), with one product and
two coproducts. The coaction p and the coproduct § are equal.
These objects will be called double bialgebras.

The algebra C[X]

(A,m) = (B, m) = (C[X], m), where m is the usual product of
polynomials, and the coproducts are given by:

" /n
A(XT) = Xk Xn_k,
(X7 kgo(k) ®
(XM =X"® X".

Then (C[X], m, A, ) is a double bialgebra.
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The Connes-Kreimer Hopf algebra of trees is based on rooted
forests:

1. . .. vt

\V,K/,Y,l,v., e e

As algebras, A = B = H i with the disjoint union product.
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The first coproduct A is given by admissible cuts
(Connes-Kreimer coproduct).

Example

ANV =Ve1+1eaV +2l®9.+.®..,

A({)={®1+1®{+I®.+.®I.

Counit:

0 otherwise.

6(,__):{1 if F=1,
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Example

(V) =Ve...+2le.l+.0V,

6(1):1@...+21®.I+.®{.

5'(F)_{1 ifF=.... .

0 otherwise.

Its counit is:

(Calaque, Ebrahimi-Fard, Manchon, 2008). Then
(Hex, m, A, d) is a double bialgebra.

This construction can be extended to finite posets or to finite
topologies.
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"Hg has for basis the set of graphs:

1, 10,..; V.,V 1. ...
Xy oKyl v, Vorno ...

The product is the disjoint union. The unit is the empty graph 1.
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(Schmitt, 1994). The first coproduct A is defined by

AG = > Gi®Gy.
V(G)=ILJ

Examples

AL)=.01+1®.,
AN)=1@1+1! +2.®.,

AV)=VR1+19V +31®.+3.01,
AV)=VRIT1T+1V +2I1®.+..0.+2.®! +.®..
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A first example: the polynomial algebra C[X]
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Graphs

(Schmitt, 1994— Manchon, 2011). The second coproduct 0 is
defined by

5(G) = ) (G/ ~)®(G~),

~

where:

@ ~ runs in the set of equivalences on V(G) which classes
are connected.

@ G| ~ is the union of the equivalence classes of ~.

@ G/ ~ is obtained by the contraction of the equivalence
classes of ~.
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Examples

5()=.®-,

()=l +1®..
(V) =9V +31®.1+ VQ..
V=9V +21.1+ V®..

Its counit is given by:

1if Gh
£(G) = if G a§ no edge,
0 otherwise.

Then (Hg, m, A, ) is a double bialgebra.
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Questions

@ Theoretical consequences?
@ Examples and applications?
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Actions and morphisms
Antipode

Theoretical consequences

We consider a double bialgebra (A, m, A, ).
Proposition

Let B be a bialgebra and let E4_, g be the set of bialgebra
morphisms from A to B. The monoid of characters M, of
(A,m,¢) acts on E4_,:
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Actions and morphisms
Antipode

Theoretical consequences

If (A, A) is a connected coalgebra:

Theorem

@ There exists a unique ¢; : A— C[X], compatible with
both bialgebraic structure.

@ The following maps are bijections, inverse one from the
other:

Ea — M
MA - EA—»C[X] A C[X(; _ 6/2 (ls
A — ¢1 A >‘7
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Actions and morphisms
Antipode

Theoretical consequences

Let us apply this result on the double bialgebra of forests.
As . is primitive, ¢1(.) is primitive, so ¢1(.) = AX. As
P1(4)(1) =£€'(c) =1, 61() = X.
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. Actions and morphisms
Theoretical consequences

Antipode

Let us apply this result on the double bialgebra of forests.
As . is primitive, ¢1(.) is primitive, so ¢1(.) = AX. As
P1(4)(1) =£€'(c) =1, 61() = X.

A =I1+10l+.®.,
Apr (M =o1(H@1T+1Q@1(H) + X® X,

2

so ¢q(1) = X? +AX. As ¢1(1)(1) = /(1) = 0, we obtain

N =
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Actions and morphisms
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Theoretical consequences

A({)={®1+1®{+I®.+.®I,

aedy —ahet+106,d)

+%(X2®X+X®X2) - X®X,

SO ¢1({) = )és—);_er)\X. As¢1({)(1) :gf({) —0, A= %
XX -1)(X—-2)
¢1(})— 5
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Actions and morphisms
Antipode

Theoretical consequences

AV =Ve1+1eoV +2l®.+.®..,

Ap1(V) =o1(V)@1+10¢1(V)
+XPRX+XRX?—X®X,

so ¢1(V) = );3 — );2 +AX. As ¢1(V)(1) =€'(V) =0,
=g
1(V) = X(X-1)@eX-1)

6
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Actions and morphisms
Antipode

For any a€ A, with e(a) = O:

Theoretical consequences

i o An-1)( )X(X—1)...(X—n+1).
n!
Here, A is the reduced coproduct:
A(a)=A(a)—a®1-1®a,

and A("1) is defined by

A(”_U _ IdA |fn: 1,
| (A2 ®1d,) o A otherwise.
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Actions and morphisms
Antipode

Theoretical consequences

Let F be a forest with k vertices, indexed by [k]. We associate
to F a polytope of dimension k:

pO/(F) = {(X'I?"'axk) € [071]k | Ighj:)(lng}

Forany ne N :
@ ehrg(n) is the number of integral points of (n — 1).pol(F).
@ ehrf"(n) is the number of integral points in the interior of
(n+1).pol(F).
This defines two polynomials ehrg(X) and ehrg?(X), the
Ehrhart and the stric Ehrhart polynomials attached to F.

Loic Foissy Cointeracting bialgebras



Actions and morphisms
Antipode

Theoretical consequences

Example 1
For F = {:

pol(F) = {(x,y,2) eR® | 0< x <y <z<1},

ic Foissy Cointeracting bialgebras



Actions and morphisms
Antipode

Theoretical consequences

Example 1

ForF={:

pol(F) = { }
ehre(n) = #{(x,y,2) e N} |0< x<y<z<n-1}
_n(n+1)(n+2)
- X ,

x,y,2)eR¥|0<x<y<z<1}
y
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Actions and morphisms
Antipode

Theoretical consequences

Example 1
For F = {:

pol(F) = {(x,y,2)eR®|0<x <y <z<1},
ehre(n) = #{(x,y,2) e N} |0< x<y<z<n-1}
nin+1)(n+2)

6 )

ehrf"(n) = t{(x,y,2) e N} |0 < x <y <z<n+1}
~n(n—1)(n—2)
_ - _
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Actions and morphisms
Antipode

Theoretical consequences

Example 2

For F = V:

pol(F) = {(x,y,z2) e R} |0<x<y,z< 1},
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Actions and morphisms
Antipode

Theoretical consequences

Example 2

For F = V:

pol(F) = {(x,y,z) e R3 |0 < x < y,z < 1},
ehre(n) = #{(x,y,2) eN* |0< x<y,z<n

_1}

=124+ ...+
_ n(n+1)(2n+1)
— S 7
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Actions and morphisms
Antipode

Theoretical consequences

Example 2

For F = V:

pol(F) = {(x,y,z) e R3 |0 < x < y,z < 1},
n

ehre(n) = #{(x,y,2)eN® |0<x<y,z<n-—1}
=124+...+n
n(n+1)(2n+1)
— = :
ehrf"(n) = #{(x,y,2) e N} |0 < x <y #z<n+1}
n(n—1)2n—1)
— . _
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Actions and morphisms
Antipode

Theoretical consequences

ehrst : Hox — C[X] is the morphism ¢.

Another morphism from H gk compatible with m, A and § is
defined by:
¢(F) = (—=1)/Flehre(=X).

Hence:

Duality principle

For any forest F,
ehrf" (F) = (—1)IFlehrs(—X).

All this can be extended to finite posets and to finite topologies.
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Actions and morphisms
Antipode

Theoretical consequences

For any ae A, with e(a) = 0:

XX =1)...(X=n+1)

o0
Z o o A1) (g) -

Let G be a graph.
@ A n-coloration of G is a map from V(G) to {1,...,n}.

@ A n-coloration is valid if any two neighbors in G have
different colors.

@ A n-coloration c is packed if ¢ is surjective.
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Actions and morphisms
Antipode

Theoretical consequences

Let G be a graph. The chromatic polynomial of G is defined by:

VneN, chrg(n) = #{valid n-colorations of G}.

chr : Hg — C[X] is the morphism ¢1.
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Actions and morphisms
Antipode

Theoretical consequences

Antipode

Let (A,m, A, ) be a double bialgebra. We assume that the
counit ¢’ has an inverse «a in the monoid of characters of
(A,m,A). Then (A, m, A) is a Hopf algebra, of antipode

S=(a®]Id)od.

As a consequence, if (A, m, A) is connected, then (A, m) is
commutative.
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Actions and morphisms

Theoretical consequences .
. Antipode

Link with morphisms to C[X]

Let ¢1 : A— C[X] be a double bialgebra morphism. Then &’
has an inverse « in the monoid of characters of (A, m, A), given
by:

a(a) = g1(a)(—-1).
Moreover, (A, m,A) is a Hopf algebra, and its antipode is given
by:
S(a) = (p1 ®1d) 0 d(a)
S

eCIXI®A | x=_1.
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Actions and morphisms
Antipode

Theoretical consequences

Antipode of Hck

For any rooted forest F:

a(F) = (-1, S(F) = X (~1)eHEOwE).

ccutof F

We recover the formula proved by Connes and Kreimer.
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Actions and morphisms

Theoretical consequences .
. Antipode

Antipode of Hg
(Hg,m,A) is a Hopf algebra. Its antipode is given by:

chhr G/ ( )‘G/N (G "‘“)

= Z 1)1l racyclic orientations of G/ ~}(G |~).

This formula was proved by Benedetti, Bergeron and Machacek
in 2019 with combinatorial methods and a Mébius inversion.
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Chromatic character
More results

Applications

There exists another Hopf algebra morphism ¢ : Hg — C[X],

defined by
90(G) = X,

If X is the character defined by A\(G) = 1 for any graph G, then
b0 = P1 — A

A is invertible in M4, and we denote its inverse by Agp,.

D1 = Po < Achr-
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Chromatic character

- More results
Applications

For any graph G:
chrg(X chm G| ~)x°)

With )\0hr = )\51 .
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Chromatic character
More results

Applications

Contraction-extraction. For any graph G, for any edge e of G:
chrg(X) = chrg e(X) — chrge(X),

Aenr(G) = —Xcnr(G/e) if eis a bridge,
o Achr(G\€) — Achr(G/e) otherwise.

Corollary

For any graph G, Ao (G) is nonzero, of sign (—1)IGl1—cc(G),
Putting chrg(X) = ap + ... + anX":

@ gk #0 < cc(G) <k <|G

@ a is of sign (—1)"~* (Rota).

@ —a, 1 is the number of edges of G.
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Chromatic character

- More results
Applications

One can can replace the double bialgebra C[X] by the double
bialgebra of quasisymmetric functions QSym.

Examples

(a1) w (a2) = (a182) + (&2a1) + (&1 + &),
(a1) w (@2a3) = (ar1apag) + (&2a1a3) + (&2a3ay)
+ ((a1 + a2)as) + (a2(a) + @),

Alar) = (a1)®1+1® (a1),
A(arap) = (a1a2) @1 + (a1) ® (&) + 1 ® (a182),
A(arapaz) = (a1aa3) ® 1 + (a1a2) ® (&)
+(a1) ® (aas) + 1 ® (a1a28a3)-
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Chromatic character

- More results
Applications

The second coproduct si given by extraction and contraction of
subwords.

Examples

é(ar) = (a1) ® (a1),
d(a1a2) = (ar1a2) @ (a1) v (a2) + (a1 + &) ® (aran),
d(ar@28a3) = (ar18283) @ (a1) w (&2) w (a3)
+ ((a1 + a)as) ® (a182) w (a3)
+ (a1(az + a3)) ® (a1) v (a283)
+ (a1 + a + a3) ® (a1a0as).
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Chromatic character
More results

Applications

Under conditions of graduations, we obtain a unique
homogeneous morphism from A to QSym, compatible with
both bialgebraic structure.

For graphs, we obtain the chromatic symmetric function. For
forests, we obtain an Ehrhart quasisymmetric function.
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Chromatic character
More results

Applications

We obtain noncommutative versions of these results, replacing
graphs by indexed graphs, trees by indexed trees, ..., and,
quasisymmetric functions by packed words.

This gives noncommutative versions of chromatic polynomials
and of Ehrhart polynomials, with a generalization of the duality
principle.

In these noncommutative versions, we lose the compatibility
between the two coproducts. To explicit the obtained
compatibility, one has to work in the category of species.
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Chromatic character
More results

Applications

Thank you for your attention!
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