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Introduction



Singular SPDEs

Semilinear SPDEs with irregular noise

(∂t −∆)u= f(u)ξ on [0, T ]× T3 (gPAM)(
∂t − ∂2

x

)
u= g(u)ζ + h(u)(∂xu)2 on [0, T ]× T (gKPZ)

with ξ/ζ noises of parabolic Hölder regularity α− 2.

→ Singular PDEs : multiplication of distributions. Given f ∈ Cα

and g ∈ Cβ,(
fg is well-defined

)
if and only if

(
α+ β > 0

)
Schauder estimates : u is expected to be α-Hölder

Singular if α+ (α− 2) ≤ 0
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→ Singular PDEs : multiplication of distributions. Given f ∈ Cα

and g ∈ Cβ,(
fg is well-defined

)
if and only if

(
α+ β > 0

)

Schauder estimates : u is expected to be α-Hölder
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Quasilinear singular SPDEs

Quasilinear associated SPDEs

∂tu− d(u)∆u= f(u)ξ on [0, T ]× T3 (QgPAM)
∂tu− d(u)∂2

xu= g(u)ζ + h(u)(∂xu)2 on [0, T ]× T (QgKPZ)

where d : R 7→ (0,∞) smooth enough with values in a compact.

∆u of Hölder-regularity (α− 2) =⇒ d(u)∆u ill-defined.

- Otto/Weber and Otto/Sauer/Smith/Weber : rough paths
flavoured variant of regularity structures

- Furlan/Gubinelli : paracomposition operators
- Bailleul/Debussche/Hofmanovà : first order paracontrolled

expansion
- Gerencser/Hairer : regularity structures
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∆u of Hölder-regularity (α− 2) =⇒ d(u)∆u ill-defined.

- Otto/Weber and Otto/Sauer/Smith/Weber : rough paths
flavoured variant of regularity structures

- Furlan/Gubinelli : paracomposition operators
- Bailleul/Debussche/Hofmanovà : first order paracontrolled
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Solving singular SPDEs : analysis

Rough path philosophy : One can multiply ξ with a distribution
u that “looks like” Z if one can multiply two distributions Z and ξ.
How to interpret ”looks like” ?

- regularity structures : local regularity with adding
distributions to polynomials as references functions for
Taylor-like expansion. (M. Hairer)

- paracontrolled calculus : global regularity using tools from
harmonic analysis and look for solutions paracontrolled by
references functions. (M. Gubinelli, P. Imkeller et N.
Perkowski)

Relation between the two approaches : Martin/Perkowski 2018 and
Bailleul/Hoshino 2018/2019.
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Solving singular SPDEs : probability

Renormalisation : define the product of two random
distributions, for example Zξ with Z := (∂t −∆)−1ξ. The product
is not almost surely well-defined so

(Zξ)(ω) 6= Z(ω)ξ(ω).

We consider a regularisation of the noise ξε −→
ε→0

ξ and add
counter-terms to the ill-defined quantity. For example, we have

(Zξ)(ω) := lim
ε→0

(
Zε(ω)ξε(ω)− E[Zεξε]

)
.
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Why insist on solving singular SPDEs ?

The renormalisation procedure might seem unnatural since one
changes the equation under investigation to solve it.

What is
renormalisation ? A way to deal with:

- divergence of random systems described by singular PDEs on
a macroscopic level.

- presence of infinity in Quantum Field Theory with stochastic
quantization.
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High order paracontrolled calculus



Paraproduct with Fourier analysis

For any distribution f ∈ D′(Td), we have the Paley-Littlewood
decomposition

f = lim
N→∞

SNf =
∑
n≥0

∆nf

where δn are projectors on the annulus of frequencies of order 2n.

→ Associated definition of Hölder spaces Cα(M).

Given two distributions f and g, we have

fg = lim
N→∞

(SNf · SNg) =
∑

n,m≥0
∆nf ·∆mg = Pfg+Pgf+Π(f, g)

where Pfg =
∑

n<m−1
∆nf ·∆mg is always well-defined.
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Given two distributions f and g, we have

fg = lim
N→∞

(SNf · SNg) =
∑

n,m≥0
∆nf ·∆mg = Pfg+Pgf+Π(f, g)

where Pfg =
∑

n<m−1
∆nf ·∆mg is always well-defined.



Heat semigroup on manifolds

Given a manifold M with a nice elliptic operator L, its heat
semigroup (Pt)t≥0 gives a smooth approximation of any
distributions.

It even does more with the Calderón formula

f = lim
t→0

Ptf =
∫ 1

0
Qtf

dt
t

+ P1f

with Qt := −t∂tPt. In the case M = Td and L = −∆, we have

P̂t(λ) = e−t|λ|
2 and Q̂t(λ) = t|λ|2e−t|λ|2

hence P̂t is approximately localised in a ball |λ| . t−
1
2 and Q̂t in

an annulus λ ' t− 1
2 .

→ Associated definition of Hölder spaces Cα(M).
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Paraproduct with heat analysis

Given two distributions f and g, we have

fg = lim
t→0

Pt (Ptf · Ptg)

=
∫ 1

0
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t
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)dt
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,

Π(f, g) :
∫ 1

0
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(
Qtf ·Qtg

)dt
t
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(Para)product and Hölder spaces

The product of two distributions is well-defined as soon as the sum
of their regularity is large enough.

Theorem
Let α < 0 < β such that α+ β > 0. Then the multiplication
(f, g) 7→ fg extends from smooth function into a continuous
bilinear operators from Cα × Cβ to Cα.

More precisely, we have

fg = Pfg + Π(f, g) + Pgf = (α+ β) + (α+ β) + (α)

and the condition α+ β > 0 is necessary only for the resonant
term Π(f, g).
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The product of two distributions is well-defined as soon as the sum
of their regularity is large enough.

Theorem
Let α < 0 < β such that α+ β > 0. Then the multiplication
(f, g) 7→ fg extends from smooth function into a continuous
bilinear operators from Cα × Cβ to Cα.

More precisely, we have

fg = Pfg + Π(f, g) + Pgf = (α+ β) + (α+ β) + (α)

and the condition α+ β > 0 is necessary only for the resonant
term Π(f, g).



First order paracontrolled expansion

Proposition (Bony paralinearisation)
Let f : R→ R be a C2

b function and u ∈ Cα with 0 < α < 1. Then

f(u) = Pf ′(u)u+ f(u)]2

for some remainder f(u)]2 of Hölder regularity 2α.



Higher order paracontrolled expansion

Proposition
Let f : R→ R be a C4

b function and u ∈ Cα with 0 < α < 1. Then

f(u) = Pf ′(u)u+ 1
2!
{

Pf (2)(u)u
2 − 2Pf (2)(u)uu

}
+ 1

3!
{

Pf (3)(u)u
3 − 3Pf (3)(u)uu

2 + 3Pf (3)(u)u2u
}

+ f(u)]

for some remainder f(u)] ∈ C4α.



Corrector operator

Consider u paracontrolled by Z : u = Pu1Z + u] with u] smooth.

We introduce the corrector from [GIP]

C(u1, Z, ξ) := Π(Pu1Z, ξ)− u1Π(Z, ξ)

so one has Π(u, ξ) = u1Π(Z, ξ) + C(u1, Z, ξ) + Π(u], ξ).

Proposition
Let α ∈ (0, 1) and β, γ ∈ R and assume that 0 < α+ β + γ < 1
and β + γ < 0. Then the corrector C extends continuously from
Cα × Cβ × Cγ to Cα+β+γ .

→ More correctors/commutators to deal with more general
equations.
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Semilinear singular SPDEs



(PAM) and intertwined paraproducts

Let u be a solution of (PAM) : L u = uξ

= Puξ + Π(u, ξ) + Pξu

with L := ∂t −∆.

Using Schauder estimates, we have

u = L −1Puξ + L −1(2α− 2)
= P̃u(L −1ξ) + (2α)

with a new paraproduct P̃ intertwined with P by P̃ = L −1 ◦ P ◦L

and the remainder is

(2α− 2) = Π(u, ξ) + Pξu
= uΠ(L −1ξ, ξ) + C(u,L −1ξ, ξ) + Pξu

Well-defined for α+ α+ (α− 2) > 0
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(PAM) and intertwined paraproducts

Let u be a solution of (PAM) : L u = Puξ + (2α− 2)
with L := ∂t −∆.
Using Schauder estimates, we have

u = L −1Puξ + L −1(2α− 2)
= P̃u(L −1ξ) + (2α)

with a new paraproduct P̃ intertwined with P by P̃ = L −1 ◦ P ◦L

and the remainder is

(2α− 2) = Π(u, ξ) + Pξu
= uΠ(L −1ξ, ξ) + C(u,L −1ξ, ξ) + Pξu

Well-defined for α+ α+ (α− 2) > 0 if Π(L −1ξ, ξ) is given.



(PAM) and intertwined paraproducts

Let u be a solution of (PAM) : L u = Puξ + (2α− 2)
with L := ∂t −∆.
Using Schauder estimates, we have

u = L −1Puξ + L −1(2α− 2)
= P̃u(L −1ξ) + (2α)

with a new paraproduct P̃ intertwined with P by P̃ = L −1 ◦ P ◦L

and the remainder is

(2α− 2) = Π(u, ξ) + Pξu
= uΠ(L −1ξ, ξ) + C(u,L −1ξ, ξ) + Pξu

Well-defined for α+ α+ (α− 2) > 0 if Π(L −1ξ, ξ) is given.



Second order paracontrolled expansion

Consider
u = P̃u1Z1 + P̃u2Z2 + u]

where Zi ∈ Ciα and u] ∈ C3α.

We have

Π(u, ξ) = Π(P̃u1Z1, ξ) + Π(P̃u2Z2, ξ) + Π(u], ξ)
= u1 · Π(Z1, ξ) + C(u1, Z1, ξ)

+ u2Π(Z2, ξ) + C(u2, Z2, ξ)
+ Π(u], ξ)

→ need paracontrolled expansion for the ui at an order depending
on i.
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Paracontrolled system

We work with paracontrolled system û = (ua)a∈A

ua =
∑

|a|+|i|≤n
P̃uaiZi + u]a.

For (gPAM) in dimension 3 and (gKPZ) in dimension 1 + 1, we
work with

u =
∑
|i|≤3

P̃uiZi + u],

ui =
∑

|i|+|j|≤3
P̃uijZj + u]i,

uij =
∑

|i|+|j|+|k|≤3
P̃uijkZk + u]ij ,

uijk = u]ijk.



Paracontrolled system

We work with paracontrolled system û = (ua)a∈A
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Paracontrolled approach

• We work with paracontrolled system û with reference functions Zi

depending only on the noise ξ to be determined at an order such
that u]ξ is well-defined.

• Using paracontrolled expansion and continuity results, we write the
right hand side as

f(u, ξ) =
n∑

i=1
Pvi

Yi + v]

with Yi depending on the noise ξ̂ := (ξ, Z1, . . . , Zn) and vi on û.
• Perform a fixed point

u = Pu0 + L−1

(
n∑
i=1

Pvi Yi

)
+ L−1v]

= Pu0 +
n∑
i=1

P̃vi

(
L−1Yi

)
+ L−1v]

such that we define a stable solution space.
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depending only on the noise ξ to be determined at an order such
that u]ξ is well-defined.

• Using paracontrolled expansion and continuity results, we write the
right hand side as
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• Perform a fixed point

u = Pu0 + L−1

(
n∑
i=1

Pvi Yi

)
+ L−1v]

= Pu0 +
n∑
i=1

P̃vi

(
L−1Yi

)
+ L−1v]

such that we define a stable solution space.



Algebra

Question : Can we use an algebraic structure to understand the
expansions ?

As in regularity structures, recursive definition of the object hence
trees are natural to consider.

Not as regularity structures, these would be planar trees with
different decorations. For example, we could set

Pξ(L −1ξ) =: and Π(L −1ξ, ξ) =: .
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Quasilinear singular SPDEs

Quasilinear SPDEs

∂tu− d(u)∆u = f(u, ξ)

where d : R→ (0,∞) smooth enough with values in a compact.

∆u of Hölder-regularity (α− 2) =⇒ d(u)∆u ill-defined

To be closer to the semilinear setting, we rewrite the equation as

∂tu− d(u0)∆u = f(u, ξ) +
(
d(u)− d(u0)

)
∆u

with u0 a smooth enough initial condition.

→ d(u)− d(u0) is expected to be small for small horizon time.
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Quasilinear singular SPDEs

For technical reasons, we work with the elliptic operator

L := −
∑
`

V 2
` = d(u0)∆ + . . .

with V` :=
√
d(u0)∂`.

The equation

∂tu− d(u0)∆u = f(u, ξ) +
(
d(u)− d(u0)

)
∆u

rewrites as

∂tu+ Lu = f(u, ξ) + ε(u, ·)Lu+ d`(u, ·)V`u

with ε(u, ·) expected small for small horizon time.
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Quasilinear singular SPDEs

We consider the paraproducts associated to L to solve

∂tu+ Lu = f(u, ξ) + ε(u, ·)Lu+ d`(u, ·)V`u.

Given a paracontrolled system û, we want to get a paracontrolled
expression

ε(u, ·)Lu+ d`(u, ·)V`u =
n∑
i=1

PviYi + v]

to build a stable solution space and perform the fixed point.
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Given a paracontrolled system û, we want to get a paracontrolled
expression

ε(u, ·)Lu+ d`(u, ·)V`u =
n∑
i=1

PviYi + v]

to build a stable solution space and perform the fixed point.



Quasilinear (PAM)

Let u be a solution of (QPAM). Then we have

L u = uξ + ε(u)Lu+ d`(u)V`u
= Puξ + Pε(u)Lu+ (2α− 2).

If u = P̃u1Z + (2α), we have

L u = Puξ + Pε(u)u1LZ + (2α− 2)′.

which yields

u = P̃uZ + P̃ε(u)u1(L −1L)Z + (2α).

The space of functions paracontrolled by Z is not stable.
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Quasilinear (PAM)

Larger expansion : u = P̃u1Z + P̃u2(L −1L)Z + (2α)

The equation rewrites

L u = Puξ + Pε(u)u1LZ + Pε(u)u2L(L −1L)Z + (2α− 2)′.

which yields

u = P̃uZ + P̃ε(u)u1(L −1L)Z + P̃ε(u)u2(L −1L)2Z + (2α).

The space is still not stable.

If u is paracontrolled by a reference function Z, then u is
also paracontrolled by (L −1L)Z.
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(QPAM) in dimension 2

We look for a solution u of the form

u =
∞∑
i=0

P̃uiZi + u]

with Zi := (L −1L)iZ and u] ∈ C2α with some condition of
convergence on (ui, Zi)i.

We write the formal equation and
identify terms of regularity α :

P̃u0Z0 + P̃u1Z1 + P̃u2Z2 + . . .

= P̃uZ0 + P̃ε(u)u0(L −1L)Z0 + P̃ε(u)u1(L −1L)Z1 + . . .



(QPAM) in dimension 2

We look for a solution u of the form

u =
∞∑
i=0

P̃uiZi + u]

with Zi := (L −1L)iZ and u] ∈ C2α with some condition of
convergence on (ui, Zi)i. We write the formal equation and
identify terms of regularity α :

P̃u0Z0 + P̃u1Z1 + P̃u2Z2 + . . .

= P̃uZ0 + P̃ε(u)u0(L −1L)Z0 + P̃ε(u)u1(L −1L)Z1 + . . .



(QPAM) in dimension 2

The fixed point equation gives

u0 = u and ui+1 = ε(u)ui for i ≥ 0

so we have
ui = ε(u)iu

Finally, u is well-defined and α-Hölder since

‖
∑
i≥0

P̃uiZi‖Cα .
∑
i≥0
‖ε(u)iu‖L∞‖(L −1L)iZ‖Cα

. ‖u‖L∞‖Z‖Cα
∑
i≥0

(
‖ε(u)‖L∞‖L −1L‖Cα→Cα

)i
which is convergent for a small enough horizon time.
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(QgPAM) in dimension 3

Same as (gPAM) but with the set of reference functions stable by
L −1L. For example, (gPAM) in dimension 3 needs a term

C(Z,Z, ξ)

with Z = L −1ξ.

For (QgPAM), this yields the terms

(L −1L)k1C
(
(L −1L)k2Z, (L −1L)k3Z, ξ

)
for any k1, k2, k3 ∈ Z+.

→ only a finite numbers of ‘model terms’ hence we get a
contraction for a small enough horizon time.
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Algebra

In other approaches, they add functions as decoration. In this
picture of trees, this comes down to add an integer on each edges.

For example, we would have

(L −1L)k1Pξ(L −1L)k2Z =:
k2

k1

and

(L −1L)k1Π((L −1L)k1Z, ξ) =:
k2

k1 .

This imposes a condition of growth with respect to this parameter
in the renormalisation.
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Thank you for your attention!


	Introduction
	High order paracontrolled calculus
	Semilinear singular SPDEs
	Quasilinear singular SPDEs

