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Motivation: Want a systematic understanding of how to glue
together deterministic ODE/PDE arguments at larger time (and
space) scales with local solution theory from Gubinelli's Branched
Rough Paths/Hairer's Theory of Regularity Structures to get a
priori bounds on solutions with the aim of getting global in time
(and space) well-posedness.
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Recent work: Studying equations with strong damping terms and
proving strong " coming down from infinity” type bounds:
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where formally ¢ : R, x RY — R and ¢ is a rough random
space-time process (like space-time white noise).

Previous work on a priori bounds/global well-posedness:

For for ®4: [Mourrat, Weber], [Gubinelli, Hofmanov4], [Albeverio,
Kusuoka], [Moinat, Weber]

[C., Moinat, Weber| extends analysis to the entire

subcritical /super-renormalizable regime.



Rough Differential Equations with strong damping:

d
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rough (a-Hdlder, for o > 0 but arbitrarily small) driving noise, and
oy Rk — RX are relatively nice vector fields.

Previous work on this class of equations by [Riedel, Scheutzow].
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Rough Differential Equations with strong damping:

d
Y (2) = —|Y(£)|" Y (1)de + 3 0, (Y(£)dX (1)
pn=1

where m>1, Y :R, = RKand X = (X’v‘)Z:1 Ry - R7isa
rough (a-Hdlder, for o > 0 but arbitrarily small) driving noise, and
oy Rk — RX are relatively nice vector fields.

Previous work on this class of equations by [Riedel, Scheutzow].
Joint work in progress using approach from SPDE with Bonnefoi,
Moinat, and Weber. Example of coming down from infinite bound:
if o, has a certain class of derivatives bounded and if Y solves the
above equation on [0, 1] then

1
sup |Y(t)] < max{t" 71, max[X : |7/}
te(0,1] heT

uniformly over the initial data Y(0) .



Philosophy for local theory:

» Problem: Equations are ill-posed on classical spaces!



Philosophy for local theory:
» Problem: Equations are ill-posed on classical spaces!

» New ingredient: One can often construct (in practice, via
stochastic techniques) various iterated integrals of the rough
driver (£ or X) even when these quantities are not canonically
defined (for ®*, this is where QFT-renormalisation appears).



Philosophy for local theory:
» Problem: Equations are ill-posed on classical spaces!

» New ingredient: One can often construct (in practice, via
stochastic techniques) various iterated integrals of the rough
driver (£ or X) even when these quantities are not canonically
defined (for ®*, this is where QFT-renormalisation appears).

» Solution: Can construct new spaces of function/distributions
that admit good local approximations (non-classical Taylor
Expansions) in terms of these iterated integrals



Philosophy for local theory:
» Problem: Equations are ill-posed on classical spaces!

» New ingredient: One can often construct (in practice, via
stochastic techniques) various iterated integrals of the rough
driver (£ or X) even when these quantities are not canonically
defined (for ®*, this is where QFT-renormalisation appears).

» Solution: Can construct new spaces of function/distributions
that admit good local approximations (non-classical Taylor
Expansions) in terms of these iterated integrals - and the
equation can be reformulated on this space in a way that
makes it locally well-posed there.
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Philosophy for a-priori bounds:

P Average entire equation at some scale L:

Yi(t) = —| Y (£)|™ LY (t) + (ZU# dX“(o)) Y E

» E, is a commutator from commuting averaging with the
non-linearity. Terms are controlled using the regularity of
various “generalised derivatives” of Y

» Problem: Unlike classical spaces, there is no general relation
between regularity of derivatives of different “order” in these
new spaces, and since all these derivatives enter our estimate
we cannot close our ODE argument.

» Solution - Algebra/Combinatorics: Can show that a solution
to a Rough Differential Equation has additional relations
between these generalised derivatives (coherence - [Bruned,
Chevyrev, PreiB, Friz], [Bruned, Chevyrev, C., Hairer] )



Quick overview of branched Rough Paths

> Let N = [1], we define T to consist of all rooted trees with
no more than N nodes, each of which is decorated by the set

{1,...,d}. & - e P .
o M X V-3

» Driving noise along with Iterated integrals encoded by map
X57t . 7- — R, 7- S hw— <X571_-, h>

(Xs, // dX (r2) dXJ (r1)
(Xs,1, J{K // / dX'(rs)dX’(r2)dX*(n1)
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» We define F to be the set of forests of trees in 7. We also
set T={1}UT.
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set T ={1}UT.

» A : Span(F) — Span(F) ® Span(F) is the Grassman-Larson
co-product
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» We define F to be the set of forests of trees in 7. We also
set T={1}UT.

» A : Span(F) — Span(F) ® Span(F) is the Grassman-Larson
co-product

» We call X a branched rough path if for all h € 'T

[X h] def ’ St7 ’
’ 0<|s— t\<1 |s — t[olhl

and (Xs,, ® Xy, Ah) = (X ¢, h)



Our solution is a Controlled Rough Path: Y : [0,1] — Span(7),

that is a family of local expansions “gencralt'sc.d
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with basepoint s and evaluated at t.



Our solution is a Controlled Rough Path: Y : [0,1] — Span(7),
that is a family of local expansions

Y= (hY)h=Y1+> (hYo)h.

heT heT
with the following regularity property,

Rsh,t = (h,Y:) — (X5t @ h, AYs), want ngt| < |s — t|(N=IhDe

RS”J should be thought of as Taylor remainder for h-derivative of Y
with basepoint s and evaluated at t.

Space of controlled rough paths is a vector space where we can
solve the equation as a fixed point problem, but in this space there
are no clear relations between Rsh’t for different h.
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constraint (h,Y¢) = T[h](Ys) for some functions T[h](-) built
inductively in h - if h = [hy--- h,], then

T[h] = (D"0,) H'T‘[h] with base cases T ] =0, .
j=1
We introduce a multiple grafting operation f ~ h
Can show that if f = hy--- h,
TIF~ h =~ (D" TIA] -
j=1

Combining this with the adjoint relation (f ® h, Ah) ~ (f ~ h, h)
allows us to show that

IR t| < |VTRA(YS)] - |R t| + higher order terms

which allows us to close our ODE argument!
Thanks for listening!



