
October 15, 2020

Coherence and Regularity of
Modelled Distributions
Higher structures emerging from renormalisation -

ESI

Ajay Chandra (Imperial College London)
joint work with
Timothee Bonnefoi, Augustin Moinat, and Hendrik Weber (Bath)



Motivation: Want a systematic understanding of how to glue
together deterministic ODE/PDE arguments at larger time (and
space) scales with local solution theory from Gubinelli’s Branched
Rough Paths/Hairer’s Theory of Regularity Structures to get a
priori bounds on solutions with the aim of getting global in time
(and space) well-posedness.

Recent work: Studying equations with strong damping terms and
proving strong ”coming down from infinity” type bounds:
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The �4 equation:

(@t ��)' = �'3 + ⇠ ,

where formally ' : R+ ⇥ Rd ! R and ⇠ is a rough random
space-time process (like space-time white noise).

Previous work on a priori bounds/global well-posedness:
For for �4

3: [Mourrat, Weber], [Gubinelli, Hofmanová], [Albeverio,
Kusuoka],
[C., Moinat, Weber] extends analysis to the entire
subcritical/super-renormalizable regime.
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Rough Di↵erential Equations with strong damping:

@tY (t) = �|Y (t)|m�1Y (t)dt +
dX

µ=1

�µ(Y (t))dXµ(t)

where m > 1, Y : R+ ! Rk and X = (Xµ)dµ=1 : R+ ! Rd is a
rough (↵-Hölder, for ↵ > 0 but arbitrarily small) driving noise, and
�µ : Rk ! Rk are relatively nice vector fields.

Previous work on this class of equations by [Riedel, Scheutzow].

Joint work in progress using approach from SPDE with Bonnefoi,
Moinat, and Weber. Example of coming down from infinite bound:
if �µ has a certain class of derivatives bounded and if Y solves the
above equation on [0, 1] then

sup
t2(0,1]

|Y (t)| . max{t�
1

m�1 , max
h2T̊

[X : h]
1

m↵|h| }

uniformly over the initial data Y (0) .
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Philosophy for local theory:

I Problem: Equations are ill-posed on classical spaces!

I New ingredient: One can often construct (in practice, via
stochastic techniques) various iterated integrals of the rough
driver (⇠ or X ) even when these quantities are not canonically
defined (for �4, this is where QFT-renormalisation appears).

I Solution: Can construct new spaces of function/distributions
that admit good local approximations (non-classical Taylor
Expansions) in terms of these iterated integrals - and the
equation can be reformulated on this space in a way that
makes it locally well-posed there.
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Philosophy for a-priori bounds:

I Average entire equation at some scale L:

ẎL(t) = �|YL(t)|m�1YL(t) +
⇣ dX

µ=1

�µ(Y (t))dXµ(•)
⌘

L
+ EL

I EL is a commutator from commuting averaging with the
non-linearity. Terms are controlled using the regularity of
various “generalised derivatives” of Y

I Problem: Unlike classical spaces, there is no general relation
between regularity of derivatives of di↵erent “order” in these
new spaces, and since all these derivatives enter our estimate
we cannot close our ODE argument.

I Solution - Algebra/Combinatorics: Can show that a solution
to a Rough Di↵erential Equation has additional relations
between these generalised derivatives (coherence - [Bruned,
Chevyrev, Preiß, Friz], [Bruned, Chevyrev, C., Hairer] )
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Quick overview of branched Rough Paths

I Let N = b 1
↵c, we define T̊ to consist of all rooted trees with

no more than N nodes, each of which is decorated by the set
{1, . . . , d}.

I Driving noise along with Iterated integrals encoded by map
Xs,t : T ! R, T 3 h 7! hXs,t , hi.

hXs,t , i =
Z t

s
dX i (r) = X i (t)� X i (s)

hXs,t , i =
Z t

s

Z r1

s
dX i (r2)dX

j(r1)

hXs,t , i =
Z t

s

Z r1

s

Z r2

s
dX i (r3)dX

j(r2)dX
k(r1)

hXs,t , i =
Z t

s

⇣Z r1

s
dX i (r2)

⌘2
dX j(r1)
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I We define F to be the set of forests of trees in T̊ . We also
set T = { } t T̊ .

I � : Span(F) ! Span(F)⌦ Span(F) is the Grassman-Larson
co-product

I We call X a branched rough path if for all h 2 T̊ ,

[X, h]
def
= sup

0<|s�t|<1

���
hXs,t , hi
|s � t||h|

��� < 1

and hXs,u ⌦ Xu,t ,�hi = hXs,t , hi

forest f 7.9 Htt . Empty forest I
'
- -
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- -
i

commutative

product of trees
f- = h , hzh 's

ft. f-fu -- 4.447.4.
•

Can turn forest into a new tree
µ
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Our solution is a Controlled Rough Path: Y : [0, 1] ! Span(T ),
that is a family of local expansions

Ys =
X

h2T
hh,Ysih = Ys +

X

h2T̊

hh,Ysih .

with the following regularity property,

Rh
s,t = hh,Yti � hXs,t ⌦ h,�Ysi, want |Rh

s,t | . |s � t|(N�|h|)↵

Rh
s,t should be thought of as Taylor remainder for h-derivative of Y

with basepoint s and evaluated at t.

Space of controlled rough paths is a vector space where we can
solve the equation as a fixed point problem, but in this space there
are no clear relations between Rh

s,t for di↵erent h.

[
"generalised

h - derivative
of Y "

-

Encodes Taylor expansion of Y
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Can show that solutions to equation solve the non-linear coherence
constraint hh,Yti = ⌥[h](Ys) for some functions ⌥[h](·) built
inductively in h - if h = [h1 · · · hn]µ then

⌥[h] ⇡ (Dn�µ)
nY

j=1

⌥[h] with base cases ⌥[ ] = �µ .

We introduce a multiple grafting operation f̃ y h
Can show that if f̃ = h̃1 · · · h̃n

⌥[f̃ y h] ⇡ (Dn⌥[hj ])
nY

j=1

⌥[h̃j ] .

Combining this with the adjoint relation hf̃ ⌦ h,�h̄i ⇡ hf̃ y h, h̄i
allows us to show that

|Rh
s,t | . |r⌥[h](Ys)| · |Rs,t |+ higher order terms

which allows us to close our ODE argument!
Thanks for listening!
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