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Introduction

Perturbative construction of interacting renormalized QFT
can be reduced to a construction of time-ordered products
of composite local fields of a free theory
(Stückelberg, Bogoliubov, Epstein-Glaser).

Basic object: S-matrix as a generating functional of time ordered
functions,

S(F ) =
∑
n

in

n!
Tn(F , . . . ,F )

with

Tn(F , . . . ,F ) =

∫
dx1 . . . dxn Tn(F (x1), . . . ,F (xn))
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Epstein-Glaser axioms fix Tn up to renormalization freedom.

Main-Theorem of renormalization (Stora-Popineau):

Two different choices of time ordered functions are related by a
renormalization group transformation Z which maps local
composite fields to each other such that the corresponding
S-matrices satisfy

Ŝ(F ) = S(Z (F ))

The dynamical law is implemented by the Schwinger-Dyson
equation which has for a scalar field φ the form

Tn+1(F (x1), . . . ,F (xn), (� + m2)φ(y))

=
∑

Tn(F (x1), . . . ,
δF (xk)

δφ(y)
, . . . ,F (xn))
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Question: Can one go beyond a construction via formal power
series?

Problem treated by Constructive QFT with some success in low
dimensions.

Other constructions exploit higher symmetries (conformal
symmetry, integrability).

New ansatz: Use unitarity to construct an abstract C*-algebra
generated by S-matrices.

Goal: Formulate all axioms of perturbation theory in terms of
relations between S-matrices.
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Causal factorization

Basic property of time ordered products

Tk(F (x1), . . . ,F (xk))Tn(F (y1), . . . ,F (yn))

= Tk+n(F (x1), . . . ,F (xk),F (y1), . . . ,F (yn))

if none of the xi is in the past of one of the yj .

This leads to the causal factorization relation for the S-matrix

S(F )S(G ) = S(F + G )

if the support of F does not intersect the past of the support of G .
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Epstein-Glaser renormalization:

This factorization yields an inductive construction of time ordered
products up to coinciding points.

The extension to coinciding points corresponds to UV
renormalization.

A complete solution can be obtained in terms of distribution theory.
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Factorization not well defined if supports have common points.
Heuristically, split interaction G = G+ + G−,
G+ in the future, G− in the past of some Cauchy surface.
Supports of F and H separated by the Cauchy surface =⇒

S(F + G + H) = S(F + G+)S(G− + H)

= S(F + G+)S(G−)S(G−)−1S(G+)−1S(G+)S(G− + H)

= S(F + G )S(G )−1S(G + H)

The resulting relation Causal Factorization

S(F + G + H) = S(F + G )S(G )−1S(G + H)

is meaningful and can in fact be derived from the simpler
factorization relation in terms of formal power series. In an
abstract framework it has to be postulated as an axiom.
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Dynamics

Implemented by a version of the Schwinger-Dyson equation
formulated in terms of S-matrices.

Field equation (functional derivative of the action) replaced by
finite difference:

δψL(φ) =

∫
L(φ+ ψ)− L(φ) ,

L Lagrangian, ψ compactly supported field configuration

Fψ(φ) = F (φ+ ψ) shifted interaction

We then require the relation Dynamics

S(F ) = S(Fψ + δψL) .
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In perturbation theory, for the free Lagrangian, this is equivalent to
the Schwinger-Dyson equation.

Other Lagrangians: add interaction terms F , suppF compact, and
construct the retarded or advanced relative S-matrices

S ret
F (G ) = S(F )−1S(F + G ) , Sadv

F (G ) = S(F + G )S(F )−1 .

They satisfy again the causal factorization and the dynamical
relation, now for the new action.

S-matrices satisfying dynamical relation for general interaction:
combination of retarded and advanced relative S-matrices
(algebraic adiabatic limit).
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C*-algebras

One can consider the group generated by S-matrices with the
relations

Causal Factorization and Dynamics for any Lagrangian.

This group generates a unique C*-algebra. This works for any
region of spacetime and yields a Haag-Kastler net of local
C*-algebras:

For any region O of spacetime one builds the C*-algebra A(O)
generated by S(F ) with suppF ⊂ O. The association O 7→ A(O)
satisfies the conditions
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Inclusion: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

Local commutativity: If O1,O2 ⊂ O and O1 is spacelike
separated from O2

then the commutator [A1,A2] ∈ A(O)

vanishes for all A1 ∈ A(O1),A2 ∈ A(O2).

Covariance If g is a symmetry of the spacetime then there
exist isomorphisms αg ,O : A(O)→ A(gO) such that

αg ,O2|A(O1)

= αg ,O1 for O1 ⊂ O2

and

αg1g2,O = αg1,g2O ◦ αg2,O .
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Question: How far is this from a construction of the theory?

First results:

If L0 is the free Lagrangian, then the S-matrices of linear
fields generate the Weyl algebra.

In the Dereszinski-Meissner representation of the free massless
field φ in 2 dimensions the S-matrices of cosφ and sinφ can
be defined and yield the algebra of observables of the
sine-Gordon model (Bahns-F-Rejzner)

The Fock representation of the Weyl algebra can be extended
to S-matrices of quadratic composite fields in 4 dimensions
(Buchholz-F). This result goes beyond perturbation theory
since it includes also changes of the spacetime metric and
therefore of causal relations.
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π irreducible representation of Weyl algebra on Hilbert space H.

π̃ extension to the full algebra (if it exists).

α 6= id acts trivially on the Weyl algebra =⇒ π̃ ◦ α 6' π̃.

Postulate: All such automorphisms are of the form

α : S(F ) 7→ S(Z (F ))

Z renormalization group transformation, characterized by

Z (0) = 0, Z (F ) local, suppZ (F ) = suppF

Z (F + G + H) = Z (F + G )− Z (G ) + Z (G + H)
if suppF ∩ suppH = ∅

Z (Fψ + δL(ψ)) = Z (F )ψ + δL(ψ)

Z (
∫
φf ) =

∫
φf

Motivation: Main Theorem on renormalization (Stora-Popineau)
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Let g be an invertible affine transformation on the field space
which maps any local functional F to another local functional g∗F
such that the Lagrangian is invariant. Then

αg (S(F )) 7→ S(g∗F )

is an automorphism. Let U(g) be a unitary operator on H which
implements αg on the Weyl algebra. Then AdU(g) ◦ α−1g acts
trivially on the Weyl algebra

U(g)α−1g (S(F ))U(g)−1 = S(Zg (F ))

g 7→ Zg fulfils the cocycle relation

Zgh = Zgg∗Zhg
−1
∗
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Outlook

Algebraic structures of formal perturbation theory induce a
construction of quantum field theories in terms of C*-algebras.

Problem of existence of QFT’s reduced to search for suitable
representations.

New nonperturbative aspects on symmetries and
renormalization.

Formalism has to be generalized to Fermi fields and gauge
theories.
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