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Plan

Motivation: transport maps in regularity structures for sections of vector
bundles.

e Lie groupoids replacing structure groups.

Direct connections replacing parallel displacement.

Torsion and curvature.

Jet prolongation of groupoids and of direct connections.



Motivation

Consider singular stochastic PDE

‘ Oru = Au+ F(u,Vu,¢) ‘

where u = u(t,x) function (or distribution) on R x R9

& white noise
F non-linear in u = product of singular distributions: ill-posed!
Need regularization u. by smooth () with ¢ — 0

renormalization to ensure convergence of u..

(These steps are not the topic here.)



Trick: solve by symbolic expansion [Hairer 2014]

e Local expansion of a-Hdlder functions (distributions) at xo:
mimic Taylor expansion

) (x
f(x) = f(x)+ Z f k(! 0) (x—x0)*+r(x0,%), |r(x0,x)| < C||x0]|*

1<|k|<n<a

by adding terms for £ and for the heat kernel

ue(x) = ue(x0) + 2 a2 (x0) (Mg, 7)(x) + r=(x0, %)

TeT

- 7 are graded symbols for , white noise =
and derivatives of convolution with the heat kernel k(7),

- N, 7 is a |7|-Hélder function which generalises (M5 X*)(x) = (x — xg)*.

¢ Relate local expansions at xp and yg:
use transport maps I, ,, induced by transaltion yo — xo € R (which
act on symbols 7).



Regularity structures on RY [Hairer 2014]

Def. An abstract regularity structure is (A, T, G) with
A < R set of homogeneities « (contains 0, bounded from below, discrete)
T = @,ca To graded vector space of symbols 7 (with norm, To = R - 1)
p: G— Aut(T) Lie group action (s.t. p(g)1 =1 and p(g)T—7eD;_4Ts)

Def. A model for (A, T,G) on R? is (M, with
N:RY - £(T,S'(RY)| and [T=poy st Ma(xy) =N,

[1RIXRI> G st q(xx)=1c and (x,y)7(y.2) =(x,2)]
plus local uniform compatibility with A.

Ex. Model for polynomial regularity structure on RY: A =N,
T = R,[Xi, ..., X4] contains pol. P(X) det. by coeff. (a,((‘kl))o<‘k‘<n
(Mo P)(x) = Xk ax (X_k%)k function on R? “centered” at xo
G = (R9, +) acts by translation p(g) P(X) = P(X + g)
(X0, ¥0) = Xo—yo so that ['(xo, y0) P(X) = P(X+x0—yo)

Thm [Hairer 2014, Bruned-Hairer-Zambotti 2017, etc]
There exist models solving several stochastic PDEs.



Regularity structures on a manifold M [Dahlquist-Diehl-Driver 2017]

M closed Riemannian manifold of dimension d with Levi-Civita
connection V and local geodesics, and with distributions D’(M).

Def. A regularity structure on M is (A, T, G) where now
‘ T=P.,caTa— I\/I‘ is a graded vector bundle (To = M xR — M).

A model for (A, T, G) on M with transport precision J € R is a
collection (., My, T(x,y)), ,, With U, an open neighborhood of x and

‘I‘IX:TX—>D’() and  T(x,y): T, — Ty

with T'(x, y) defined on a diagonal domain in M x M (i.e. for x, y close)
and M, (x,y) # I, but the difference is bounded by £.

Ex. Model for polynomial regularity structure on M: A =N,

T = @)_o S' T M symmetric powers of covectors (representing jets)

n

(HXOT) (x) = 2 %TZ(GXPXO (x )®£) and (F(X,y)T)e = Sym(Vf(I’lyT)).
(=0



Remarks leading to groupoids

e These models apply to functions (on R or M) with scalar values, or

——

vector values seen in components, or in manifolds embedded in RN,

Wish PDEs for sections u : M — E of vector or fibre bundles endowed
with a connection fixing parallel displacement.

Hairer's model equations
nxr(xvy) = I_ly and r(va)r(yaZ) = r(X7Z)

are linked and say that [ is a groupoid morphism from the pair groupoid
of M to a groupoid acting on the fibres of T — M.

Dahlqvist, Diehl and Driver attach groups to pairs of points of M.

Add a principal G-bundle P — M associated to E and consider the
gauge groupoid G(P) = M.

Dahlqvist, Diehl and Driver relax the model equations by introducing a
precision f3.

Look for suitable connection on groupoids whose curvature measures
the default of (local) groupoid maps to be groupoid morphisms.

Next: follow the deformation of the connection through renormalization.

Work in progress with S. Azzali, Y. Boutaib and S. Paycha.



Lie groupoids

Def. A Lie groupoid G 3 M is a smooth manifold of arrows +,, € G above

(y,x) € M x M determined by surjective submersions called the source
S(y) = x , such that
t(yyx) =y
- arrows can be composed 7,7y« € G5 if s(7;,) = t(7,x) (associative),
- above points there are units u(x) =1, € GX and M = u(M) c G,
- each arrow 7y, € GY has an inverse ’yy’xl € g;.
The induced map (t,s) : G — M x M is called the anchor.

Y, L

and the target map s,t: G - M {

‘z{(!
Features: M z "

e Each G is a (non empty) Lie group, the vertex group or isotropy.
e G has a rich infinitesimal structure given by a Lie algeborid A — TM.
e G can act on fibre or vector bundles E — M.

== Lie groupoids are (bi-)fibred generalizations of Lie groups
whose action on fibre bundles keeps track of fibre transformations
(internal symmetry) and bundle automorphisms (global symmetries).



Examples of Lie groupoids

« Pair groupoid | Pair(M) = MxM = M|

o Trivial Lie groupoid with fibre G [MxGxM = M|

e Gauge groupoid of principal G-bdl P — M \g(P) —PxcP3 M \
made of equivalence classes [p, g] under (p,q) ~ (pg,qg) for g€ G.

e Frame groupoid of vector bdl E -~ M |Iso(E) = U, , Iso(Ey, Ex)

If E has rank r and \ F(E) = |, Iso(R", )
(principal GL,(R)-bundle), then

is the frame bundle of E
Iso(E) = G(F(E))|

If the structure group of E reduces to G < GL,(R), then
| G(P) — Tso(E) |




Direct connections on Lie groupoids

Def. A local map between two groupoids G and G’ over M is a map
¢ U < G — G’ defined on an open neighborhood U/ of the units

u(M) < G, which commutes with s, t and u. Denote it m

A local morphism is local map which also preserves composition
(hence inversion).

Def. [Teleman 2004 in the linear case, Kock 2007 similar, ABFP general]
A direct connection on a Lie groupoid G 3 M is a local right inverse

of the anchor which preserves the units, i.e. ‘ I : Pair(M) »#— g‘

defined on an open neighborhood U of the diagonal A < Pair(M)
(diagonal domain), such that

M(y,x) e @ |forall (y,x) els and |T(x,x) = 1, € G |for all x e M.

Prop ‘A Lie groupoid with a direct connection is a gauge groupoid. ‘




Expected examples

Assume M is a manifold with affine connection V™ and local geodesics.

Parallel displacement 7 on P — M along small geodesics
(equivalent to a principal connection w on P)
defines a direct connection '™ on G(P) = M.

Same for E — M and Iso(E) [Teleman 2004].

e | Viceversa, a direct connection I on G(P) = M induces an
infinitesimal connection on the Lie algebroid A(P) — TM,
hence a principal connection w" on P.

o Apply maps w — 7 — ™ — W', then on P.
e Viceversa, if apply maps I — w' > 77 > ™", then on G(P)

in general.

e There are direct connections on G(P) which are not parallel
displacements (simplest example in two slides).



Curvature and flat direct connections
Let ' : Pair(M) =— G be a direct connection defined on Ua.

Def. For xe M, set UX(x) ={ye M| (x,y),(y,x) elUa} = M.
Torsion of I at x is the map | T'(_,x) : Ux(x) —> GX | given by

[T () =TTy 0 e G| yelh(x).
[ is torsion-free if T'(y,x) = 1, for any y, i.e. [(x,y) = (y,x)
Def. For x € M, set
UR() = ((2,y) € M x M| (y,%), (2,y), (2, %) € Un} © M x M.

-1

Curvature of I at x is the map‘ RT(,, ., x) : UX(x) — G |given by

(z,y) € UA(%).

[is flat if R"(_, ,x) = 1, for any x, i.e. T is a groupoid morphism.

‘Rr(z,y,x) =T (z,x)7 M (z,y) T (y,x) € GF|,

e If I is flat then it is torsion-free. But not the other way round.

o A parallel transport is always torsion-free (torsion can not be seen on P!)
and it is a flat direct connection iff the principal connection is flat.



Examples

e M =R with flat connection V¥ (h(x) x) = ' (x) o

e £ =M xR — M with global section e;(x) = (x,1) € E, and linear
connection V5 :T(E) — I'(E) given by f € C*(M) st. V5 e = fer.

e The induced parallel transport along a geodesic from x to y is the
isomorphism 7(y, x) : Ex — E, defined by 7(y,x) & e1(x) = &(y) er(y)
solution of the ODE

Vi (00 e(x) = (€'(x) + E(x)f(x))ea(x) = 0

with initial value £(x) e1(x) = & er(x). Set F(x) ={—f(x)dx.
Then the direct connection on Iso(E) is

T(y,x) : Ex— E,, e1(x) — 7(y,x) e1(x) = eFM=FX) ¢ (y)

This direct connection is flat. For instance:

Vgxel(x) = —2xe(x) gives 7(y,x)e1(x) = ey*X”Q’Xzel(y),
VE er(x) = —3x2ei(x) gives T(y, x)er(x) = & ey(y).

e Instead, the following direcQt connections are not parallel transp?rts:
My, x)er(x) = e’ XtV g (y), with torsion TT(y,x) = 29" % 1,
My, x)er(x) = />t g (y), torsion-free but non-flat.



Jet prolongation of groupoids
e E — M vector bundle of rank r with structure group G < GL,(R),
principal G-bundle P - M s.t. E >~ P xg R" and G(P) < Iso(E).

Def. The n-jet bundle is the vector bundle of n-jets jJu of
local sections u : M+ E around x (i.e. equivalence classes of local
sections with the same contact of order n at x).

Thm [Kol&¥-Michor-Slovak 1993]
The structure group of J"E — M is the semidirect group

GL" = invJ7 (RY, RY)

| Wi6 = 6Ly« TJ6 | T2G = J)(RY, G)

and the associated principal W G-bundle is the jet prolongation

(WP =FMxulP| | F"M=invg(®Re M) |

Def. The n-jet prolongation of a Lie groupoid G =2 M is the groupoid

of n-jets of local bisections o : M — G s.t. soo = id

and to o = . is a local diffeomorphism.

Thm [KoléF 2008] \ W"F(E) = FJ"E\ \J"g(P)) ~ Q(W”P)‘




Geometric regularity structures

e M manifold with affine connection VM, E — M be a vector bundle of
rank r with structure group G — GL,(R), associated principal G-bundle
P — M and gauge groupoids G(P) < Iso(E).

Def. [ABFP] A geometric polynomial structure on E — M is a regularity
structure

(A, J"E, J"G(P))

with A = [[0, n]] and J"G(P) = G(W"P) < Iso(J"E) acting on J"E.

A model for (A, J"E,G(W"P)) is | direct connection (") on J"G(P)

and a collection ( ,I'IX)XeM with a uniformly normal open n. of x
and

\ My : J'E — D'(U,) \

(Next: model equations, flatness and precision 3 (need analysis!).)

Thm [ABFP] |Any direct connection I : Pair(M) «+— G can be
prolonged to the jet groupoid '™ : Pair(M) #— J"G.




Jet prolongation of direct connections

Lemma

There exists a canonical geodesic direct connection 5(") on J"Pair(M).

Proof. For xg € M let U,, be a uniformly normal neighb. of xp in M.
Then U = {(y,x) | xe M,y € Uy} is a neighb. of A in Pair(M).

For any (yo,%0) € U < Pair(M) take the geodesic v : [0,1] —> M s.t.
7(0) = xo and v(1) = yp and define a local map o : Uy, — Pair(M) by

o) = (20(0.%) | with [ip,() = exp, (r(ox.30) (exp5 ()

where expt(yo) € T,,M is along v and 7(x, Xo) is the parallel transport
on TM along a geodesic from xg to x € Uy,.

° Lf)gfx):xkae

Finally, define 6(" : Pair(M) s— J"Pair(M) by | 6" (xo, y0) = j0 |




Thm | Any direct connection I : Pair(M) «+— G can be
prolonged to the jet groupoid '™ : Pair(M) #— J"G.

Proof. If [ : V c Pair(M) — G, the intersection UV is a diagonal
domain and for any (yo,xp) € U NV there exists a geodesic bisection
0: Uy,— Pair(M) defined as above.

Then T o oy is a local bisection of G and can define

T (yo,%0) = j2 (Toop) = It © 5 (x0, yo)




Next:

- Look for higher dimensional examples of direct connections which are
not parallel displacements.

- Look for examples of direct connections on jet groupoids J"G which are

Adapt to a-Holder sections of bundles and include precision f3.
- Start from a parallel displacement and follow the renormalization
process.

- Study the whole geometry of groupoids with direct connections and
compare with usual gauge theory!
(work in progress with S. Azzali, A. Garmendia and S. Paycha)

Thank you for the attention!



