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Part I: Multizeta values and the Drinfeld associator

For each sequence (k1, . . . , kr) of strictly positive integers, k1 ≥ 2, the
multiple zeta value is defined by the convergent series

ζ(k1, . . . , kr) =
∑

n1>···>nr>0

1

nk11 · · ·n
kr
r

.

These real numbers have been studied since Euler (1775).

They form a Q-algebra, the multizeta algebra Z.



Two multiplications of multizeta values

1. Shuffle multiplication

Straightforward integration shows that

ζ(k1, . . . , kr) = (−1)r
∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

dtn
tn − εn

· · · dt2
t2 − ε2

dt1
t1 − ε1

where
(ε1, . . . , εn) = (0, . . . , 0︸ ︷︷ ︸

k1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k2−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
kr−1

, 1).

The product of two simplices is a union of simplices, giving an expres-
sion for the product of two multizeta values as a sum of multizeta values.
This is the shuffle product.



Example. We have

ζ(2) =

∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

ζ(2, 2) =

∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
t3

dt2
1− t2

dt1
t1

ζ(3, 1) =

∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
1− t3

dt2
t2

dt1
t1

and
ζ(2)2 = 2 ζ(2, 2) + 4 ζ(3, 1).



Convergent words in x, y

A convergent word w ∈ Q〈x, y〉 is a word w = xvy.

The reason for this notation is that it gives a bijection

{tuples with k1 ≥ 2} ↔ {convergent words}
(k1, . . . , kr)↔ xk1−1y · · ·xkr−1y.

Definition. For two monomials u, v ∈ Q〈x, y〉, the shuffle product
sh(u, v) is the set or formal sum of permutations of the letters of u and
v where the letters of each word remain ordered.

Example. sh(y, xy) = yxy + 2xyy.



We use the x, y-notation to define ζ(w) for any convergent word w =
xk1−1y · xkr−1y by setting

ζ(xk1−1y · · ·xkr−1y) := ζ(k1, . . . , kr).

We then extend the definition of ζ(w) to all words w by writing w = yauxb

with u convergent and setting

ζ(w) :=
a∑
r=0

b∑
s=0

(−1)r+sζ
(
sh(yr, ya−ruxb−s, xs)

)
.

Theorem. For all words u, v in x, y, we have

ζ(u)ζ(v) = ζ
(
sh(u, v)

)
.

In particular, this multiplication law shows that the Q-vector space Z has a
Q-algebra structure.



2. Stuffle multiplication

The product of two series over ordered indices can be expressed as a
sum of series over ordered indices. This is the stuffle product of multizeta
values.

Example. We have

ζ(2)2 =
(∑
n>0

1

n2

)(∑
m>0

1

m2

)

=
∑

n>m>0

1

n2m2
+

∑
m>n>0

1

n2m2
+

∑
n=m>0

1

n4

= 2ζ(2, 2) + ζ(4).



The x, y notation for stuffle

We write
st
(
(k1, . . . , kr), (l1, . . . , ls)

)
for the formal sum of sequences that come from this way of calculating the
product of ζ(k1, . . . , kr)ζ(l1, . . . , ls). For example

st
(
(2), (3)

)
= (2, 3) + (3, 2) + (5).

We translate this operation on sequences over to convergent words.
Letting yi = xi−1y, we write a convergent word w = xk1−1y · · ·xkr−1y

as w = yk1 · · · ykr , and define the stuffle product of convergent words st(u, v)
as above. For example

st(xy, x2y) = st(y2, y3) = y2y3 + y3y2 + y5.

Thus
ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).



The Drinfeld associator

Definition. The Drinfeld associator is the power series given by

ΦKZ(x, y) = 1 +
∑

w∈Q〈x,y〉

(−1)dwζ(w)w

where dw is the number of y’s in the word w. Let Φ∗KZ denote the product

exp
(∑
n≥2

(−1)n−1

n
ζ(n)yn1

)
· πy(ΦKZ),

where πy forgets all words ending in x, and rewrites words ending in y in
the letters yi.

Theorem. For all words w in the letters yi, set ζ∗(w) = (Φ∗KZ |w). Then

(i) For all convergent words w, we have ζ∗(w) = ζ(w).

(ii) For every pair of words u, v in the yi, we have

ζ∗(u)ζ∗(v) = ζ∗
(
st(u, v)

)
.

Since non-convergent words in the yi are exactly those starting with y = y1,
assigning a value ζ∗(w) to these words exactly means giving a regularized
value to the divergent quantities ζ(1, k2, . . . , kr).



The shuffle and stuffle relations between multizetas can be encoded
directly as properties of the Drinfeld associator.

Shuffle relations: The shuffle relations satisfied by the ζ(w) are encoded
in the property

∆(ΦKZ) = ΦKZ ⊗ ΦKZ , (1)

where ∆(x) = x ⊗ 1 + 1 ⊗ x and ∆(y) = y ⊗ 1 + 1 ⊗ y is the standard
coproduct on the Hopf algebra Q〈〈x, y〉〉.

Stuffle relations: The stuffle relations satisfied by the ζ∗(w) are encoded
in the condition

∆∗(Φ∗) = Φ∗ ⊗ Φ∗, (2)

where ∆∗ be the coproduct on Q〈〈y1, y2, . . .〉〉 defined by

∆∗(yi) =
∑
k+l=i

yk ⊗ yl.



Part II

The Grothendieck-Teichmüller and double shuffle Lie algebras

Definition of the n-strand braid Lie algebra. Let LiePn be the Lie
algebra given by:

Generators: xij , 1 ≤ i, j ≤ n with xij = xji, xii = 0

Relations: [xij , xij + xik + xjk] = 0 for sets |{i, j, k}| = 3
∑
j 6=i xij = 0

[xij , xkl] = 0 if {i, j} ∩ {k, l} = ∅.

In particular, LieP4 is free on x12, x23 and LieP5 can be generated by
x12, x23, x34, x45, x51 or by x12, x23, x14, x24, x34.

Theorem. [Drinfel’d] The Drinfeld associator also satisfies the associator
relations

(I) ΦKZ(x, y)ΦKZ(y, x) = 1

(II) eπixΦKZ(y, x)eπiyΦKZ(z, y)eiπzΦKZ(x, z) = 1 with x+ y + z = 0,

(III) The 5-cycle relation

ΦKZ(x12, x23)ΦKZ(x34, x45)ΦKZ(x51, x12)ΦKZ(x23, x34)ΦKZ(x45, x51) = 1,

where the xij generate LieP5.



Lie algebras associated to ΦKZ

Definition. For any ring R, let DS(R) denote the set of double shuffle
power series in R〈〈x, y〉〉 that are group-like, have no linear term and satisfy
the double shuffle relations.

Let DS0(R) denote the subset (pro-unipotent group) of those having
no quadratic terms. Then ΦKZ ∈ DS(Z), and if ΦKZ denotes the power
series ΦKZ with coefficients reduced modulo ζ(2) then

ΦKZ ∈ DS0(Z/〈ζ(2)〉).

Definition. For any ring R, an associator is a group-like power series
Φ(x, y) ∈ R〈〈x, y〉〉 with no linear term which satisfies the associator rela-
tions (I), (II), (III) with iπ replaced by µ/2 for some µ ∈ R.

Let GRT0(R) denote the set (pro-unipotent group) of associators with
no quadratic term. The power series ΦKZ is an associator and for the
reduced power series we have

ΦKZ ∈ GRT0(Z/〈ζ(2)〉.



Definition. Let ds = ds(Q) denote the Lie algebra consisting of polynomi-
als f(x, y) ∈ Q〈x, y〉 such that

(i) f is of degree ≥ 3,

(ii) f is Lie-like for ∆, i.e. f ∈ Lie[x, y], and

(iii) f∗ is Lie-like for ∆∗, where f∗ is obtained from f by the formula

f∗ = πy(f) +
∑
n≥2

(−1)n−1

n
yn1 .

Definition. Let grt = grt(Q) denote the Lie algebra consisting of polyno-
mials f(x, y) ∈ Q〈x, y〉 such that

(i) f is of degree ≥ 3,

(ii) f ∈ Lie[x, y]

(iii) f(x12, x23) + f(x23, x34) + f(x34, x45) + f(x45, x51) + f(x51, x12) = 0,
where the xij generate LieP5.

Remark. Clearly ds is the Lie version of DS0. By a theorem of H. Furusho,
these properties automatically imply that if x+ y + z = 0 then

f(x, y) + f(y, x) = f(x, y) + f(y, z) + f(z, x) = 0.

So this definition really is the graded Lie algebra associated to GRT0.



The Lie bracket: Every f ∈ Lie[x, y] yields a derivation Df of Lie[x, y]
defined by

Df (x) = 0, Df (y) = [y, f(x, y)].

We write Der∗ Lie[x, y] for the derivations of this type. We can put a dif-
ferent Lie bracket on the vector space Lie[x, y], called the Poisson or Ihara
bracket via

{f, g} = [f, g] +Df (g)−Dg(f),

which corresponds to bracketing derivations:

[Df , Dg] = D{f,g}.

* Ihara: grt is a graded Lie algebra under {, } (so GRT0 is a pro-unipotent
group).

* Racinet,Ecalle: ds is a graded Lie algebra under {, } (so DS0 is a pro-
unipotent group).

Theorem. (Furusho) There is an injection of Lie algebras

grt ↪→ ds

f(x, y) 7→ f(x,−y).



Part III. A dimorphic definition of grt

Theorem. Let LienP5 be the graded part of LieP5 of degree n, and let K4

denote the kernel of the morphism that “erases the 4th strand”. Then

(i) K4 := 〈x14, x24, x34, x45〉 ' 〈x24, x34, x45〉 is a free Lie algebra on 3
generators (since x14 + x24 + x34 + x45 = 0).

(ii) We have the semi-direct product decomposition

LieP5 ' 〈x12, x23〉oK4.

(iii) For fixed n ≥ 1, we have the direct sum decomposition

LienP5 ' 〈x12, x23〉n ⊕ (K4)n.

This theorem implies that if f ∈ LienP5, then f can be written uniquely as

f = f0(x12, x23) + F

where F ∈ K4. We call F the normalization of f with respect to the 4th
strand.



We want to consider the normalization of elements of LieP5 of the form
f(x12, x51) where f(x, y) ∈ Lie[x, y].

We use the two following facts:

(1) The relation x51 = x23 + x24 + x34 in LieP5

(2) The fact that if a, b, c ∈ LieP5 and [a, c] = [b, c] = 0, then

f(a, b+ c) = f(a, b).

By (1), we have
f(x12, x51) ≡ f(x12, x23) mod K4.

Therefore for f(x12, x51), we have f0(x12, x23) = f(x12, x23), so the normal
form of f(x12, x51) in LieP5 is

f(x12, x51) = f(x12, x23) + F

with F ∈ K4.



Recall that an element f ∈ grt is an f ∈ Lie[x, y] that satisfies the
pentagon relation

f(x51, x12) + f(x12, x23) + f(x23, x34) + f(x34, x45) + f(x45, x51) = 0.

Since it also satisfies f(x, y) + f(y, x) = 0, we can write this as

f(x12, x51) = f(x12, x23) + f(x23, x34) + f(x34, x45) + f(x45, x51)

= f(x12, x23) + f(x23 − c, x34) + f(x34, x45) + f(x45, x23 + x24 + x34)

= f(x12, x23) + f(−x24 − x34, x34) + f(x34, x45) + f(x45, x24 + x34)

where c = x23 + x24 + x34 commutes with x23 and x34.

This is nothing other than the normalization of f(x12, x51) with respect to
the 4th strand.

So an equivalent definition of grt is the space of f ∈ Lie[x, y]
such that the normalization F of f(x12, x51) is given by

F = f(−x24 − x34, x34) + f(x34, x45) + f(x45, x24 + x34).



Set {x := x45
y := x24 + x34
z := x34,

and write K4 = 〈x, y, z〉. Then this re-definition of grt can be expressed as
follows: the space of f ∈ Lie[x, y] such that the normalization F of
f(x12, x51) is of the form

F (x, y, z) = f(−y, z) + f(z, x) + f(x, y).

Lemma. Let f ∈ Lie[x, y] and let F be the normalization of f(x12, x51) ∈
LieP5. Then F (x, y, 0) = f(x, y)

F (x, 0, z) = f(z, x)
F (0, y, z) = f(−y, z).



So the re-definition of grt can be expressed as follows: the space of
f ∈ Lie[x, y] whose normalization F has no monomials in all three
variables, i.e. satisfies

F (x, y, z) = F (x, y, 0) + F (x, 0, z) + F (0, y, z).

The coefficients of F are all linear combinations of the coefficients of f .
Therefore we have:

Dimorphic definition of grt: the space of polynomials f ∈ Q〈x, y〉 whose
coefficients satisfy two families of linear relations:

(i) the shuffle relations (so f ∈ Lie[x, y]),

(ii) the relations (F |w) = 0 for all mixed monomials w in x, y, z.



Part IV. Normal form of braids in LieP5

The goals of this research project are:

(i) to find an explicit expression for the coefficients of the mixed mono-
mials in F , and

(ii) to relate them to the stuffle relations, so as to recover Furusho’s
result grt ↪→ ds and possibly even prove the conjectured isomorphism of
these spaces.

Let d, v and u1 be derivations of K4 ' Q〈x, y, z〉 defined by d(x) = 0
v(x) = 0
u1(x) = 0

 d(y) = [y, x]
v(y) = [y + x, z]
u1(y) = 0

 d(z) = 0
v(z) = 0
u1(z) = [y, z],

and for any w ∈ Q〈x, y, z〉, let u2(w) = wy. Let u be the linear operator
u1 + u2 on Q〈x, y, z〉.

Normalization theorem. Let f ∈ Lie[x, y] and write f = xfx + yfy.
Then

(i) fy(d, u) · y = f(x, y).

(ii) fy(d+ v, u) · y = F (x, y, z)



This helps compute the coefficients (F |w) for mixed monomials w.

Example. Consider the monomial yxazxb. Recall that

F (x, y, z) = fy(d+ v, u).

The words in d, u, v that can produce this monomial are exactly

db · v · da − db−1h · uda +

a−1∑
i=0

diu · dbh · da−1−i −
a∑
i=0

diu · db−1h · da−i.

Therefore since F (x, y, z) = fy(d + v, u), the coefficient (F |yxazxb) is
given by

(
fy(d+ v, u)|db · v · da

)
+

a−1∑
i=0

(
fy(d+ v, u)|diu · dbv · da−1−i

)

−
(
fy(d+ v, u)|db−1v · uda

)
−

a∑
i=0

(
fy(d+ v, u)|diu · db−1v · da−i

)
.



But for any monomial w(d, u, v), we have(
fy(d+ v, u)|w(d, u, v)

)
=
(
fy(d, u)|w(d, u, d)

)
,

so this is equal to

(
fy(d, u)|da+b+1

)
+

a−y1∑
i=0

(
fy(d, u)|diu · da+b−i

)
−
(
fy(d, u)|dbuda

)
−

a∑
i=0

(
fy(d, u)|diu · da+b−i

)
=
(
fy(d, u)|da+b+1

)
−
(
fy(d, u)|dbuda

)
−
(
fy(d, u)|daudb

)
=
(
fy(x, y)|xa+b+1

)
−
(
fy(x, y)|xbyxa

)
−
(
fy(x, y)|xayxb

)
=
(
f(x, y)|yxa+b+1

)
−
(
f(x, y)|yxbyxa

)
−
(
f(x, y)|yxayxb

)
.



Thus the coefficient of yxazxb in F (x, y, z) is zero if and only if f satisfies

(f |yxbyxa) + (f |yxayxb)− (f |yxa+b+1) = 0.

Setting g(x, y) = f(x,−y), this means that

(g|yxbyxa) + (g|yxayxb) + (g|yxa+b+1) = 0,

which is exactly the stuffle relation st((a), (b)) for g.

This example shows how stuffles can arise naturally from nor-
malizing elements of LieP5.



Theorem. Let f ∈ Lie[x, y] and let F (x, y, z) be the normalization of
f(x12, x51) in LieP5. Then

(i) the coefficient of yxa1 · · · yxarzxb in F is st
(
(b), (a1, . . . , ar)

)
.

(ii) the coefficient of yxa1 · · · yxarzxb1 · · · zxbs in F (with s ≤ r) is equal to
st
(
(bs, . . . , b1), (a1, . . . , ar)

)
up to adding stuffles whose left-hand sequence

is of length < s.

General rule. Let A = a1, . . . , ar and let yA = yxa1 . . . yxar . Then

(F |yA · zxb) = st
(
(b), (A)

)
(F |yA · zxbzxc) = st

(
(c, b), (A)

)
− st

(
(c), (A, b)

)
− st

(
(c+ b), (A)

)
(F |yA · zxbzxczxd) = st

(
(d, c, b), (A)

)
− st

(
(d+ c, b), (A)

)
− st

(
(d, c+ b), (A)

)
+ st

(
(d+ c+ b), (A)

)
− st

(
(d, c), (A, b)

)
+ st

(
(d+ c), (A, b)

)
− st

(
(d), (A, b, c)

)
.



Corollary. If the mixed monomials in F (x, y, z) are all zero, then all the
stuffle relations hold for f .

Thus our method recovers Furusho’s result grt ↪→ ds.

In order to prove that grt ' ds, we need to prove that the coefficients of
all mixed monomials in F are sums of stuffles, or that they can be deduced
from the special monomials in the theorem, in which the z’s follow the y’s.
Ongoing...


