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The non-commutative Connes-Kreimer Hopf algebra NCK

The Hopf algebra NCK (Foissy, 2002) is freely generated by the set of all
finite rooted planar trees.

Monomials of rooted planar trees←→ Ordered forest

The algebra NCK is graded by the total number of nodes in a forest.
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The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by admissible cuts:

∆(f) :=
∑

S admissible

f ′S ⊗ f ′′S.

There is a map ϕ from ordered trees to binary trees which induces an
isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

Yannic VARGAS Algebraic structure of the Hopf algebra of double posets 4 / 44



The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by admissible cuts:

∆(f) :=
∑

S admissible

f ′S ⊗ f ′′S.

There is a map ϕ from ordered trees to binary trees which induces an
isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

Yannic VARGAS Algebraic structure of the Hopf algebra of double posets 4 / 44



A canonical map from forests to permutations

Let / and \ the following operations on binary trees:

We construct ϕ recursively:
ϕ(∅) := |;
ϕ(B+(f)) := ϕ(f)/Y;
if f = (t1, t2, . . . , tn), then ϕ(f) = ϕ(t1)\ϕ(t2)\ · · · \ϕ(tn).
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A canonical map from forests to permutations
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Permutation = binary tree with decreasing labelling

Let Sn the symmetric group on [n] := {1, 2, . . . , n}.
For σ ∈ Sn, we use the linear notation:

σ = σ(1)σ(2) · · ·σ(n).
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Permutation = binary tree with decreasing labelling
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Operations on trees

Split an ordered tree u ∈ Sn from one of his leaves produces an ordered
forest (u0.u1. . . . , uk), with labels in [n]. We denotes this process by

u
g7−→ (u0, u1, . . . , uk).

For example:
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Operations on trees

Graft an ordered forest (u0.u1. . . . , uk), with labels in [n], onto a tree
v ∈ Sk gives a tree

(u0.u1. . . . , uk)/v ∈ Sn+k.

For instance, the graft of the preceding ordered forest onto the tree

v =

produces
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Malvenuto-Reutenauer Hopf algebra SSym

Is the Hopf algebra defined on
⊕
n≥ 0K[Sn], with basis {Fw : w ∈ S},

where the product is the shifted shuffle, and the coproduct is the
destandardized deconcatenation.

For u ∈ Sn and v ∈ Sp, we have:

Fu · Fv =
∑

u
g7−→ (u0,u1,...,up)

F(u0,u1,...,up)/v,

∆(Fu) =
∑

u
g7−→ (u0,u1)

Fst(u0) ⊗ Fst(u1).
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Malvenuto-Reutenauer Hopf algebra SSym

If u ∈ Sn and v ∈ Sp, then

Fu · Fv :=
∑

w∈Sn+p

st(w∩{1,...,n})=u
st(w∩{n+1,...,n+p})=v

Fw,

where w ∩ I is the word obtained by erasing the letters in w which are not
in I and st is the standardization operator.
For instance,

F12 · F21 = F1243 + F1423 + F1432 + F4123 + F4132 + F4312.

The set of permutations in the product Fu · Fv is called the set of
shuffles of u and v.
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Malvenuto-Reutenauer Hopf algebra SSym

If w ∈ Sn, then

∆(Fw) :=

n∑
k=0

Fst(w1···wk) ⊗ Fst(wk+1···wn).

We have:

∆(F312) = Fλ ⊗ F312 + F1 ⊗ F12 + F21 ⊗ F1 + F312 ⊗ Fλ.
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The graded dual SSym?

For every permutation u, let Gu the dual basis of the basis element Fu.
The Hopf-algebraic structure of the graded dual of SSym is described as
follows.

Product rule: if u ∈ Sn and v ∈ Sp, then

GuGv :=
∑

w∈Sn+p

st(w1w2···wn)=u
st(wn+1wn+2···wn+p)=v

Gw.

For instance,

G12G21 = G1243 +G1342 +G1432 +G2341 +G2431 +G3421.

Yannic VARGAS Algebraic structure of the Hopf algebra of double posets 15 / 44



The graded dual SSym?

For every permutation u, let Gu the dual basis of the basis element Fu.
The Hopf-algebraic structure of the graded dual of SSym is described as
follows.

Product rule: if u ∈ Sn and v ∈ Sp, then

GuGv :=
∑

w∈Sn+p

st(w1w2···wn)=u
st(wn+1wn+2···wn+p)=v

Gw.

For instance,

G12G21 = G1243 +G1342 +G1432 +G2341 +G2431 +G3421.

Yannic VARGAS Algebraic structure of the Hopf algebra of double posets 15 / 44



The graded dual SSym?

Coproduct rule: if u ∈ Sn, then

∆(Gu) :=

n∑
k=0

Gst(u[k]) ⊗Gst(u[k]).

We have:

∆(G312) = Gλ ⊗G312 +G1 ⊗G21 +G12 ⊗G1 +G312 ⊗Gλ.
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Relevance of SSym in renormalization

As a Combinatorial Hopf Algebra (CHA), (almost) every CHA can be
realized as a quotient or a sub-Hopf algebra of SSym.
SSym is a sub-algebra of the convolution algebra of (End(K〈A), � ):

u �̃ v := � ◦ (u⊗ v) ◦ δ

D. Yang used SSym to reinterpret the integration of Lipschitz
one-forms along geometric rough paths developed by Lyons as an
integration of time-varying exact one-forms along group-valued paths.
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SSym as a unital infinitesimal bialgebra

A unital infinitesimal bialgebra (B, •, ∆) is a vector space B equipped
with a unital associative product • and a counital coassociative coproduct
∆, such that they satisfies the following compatibility rule:

∆(x • y) = (x⊗ 1) • ∆(y) + ∆(x) • (1⊗ y) − x⊗ y.

This relation is called the unital infinitesimal relation.
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SSym as a unital infinitesimal bialgebra

We introduce two operations, / and \, on the set of permutations S. Given
u ∈ Sn and v ∈ Sp, let

u/v := u1 · · ·un(v1 + n) · · · (vp + n),

u\v := (u1 + p) · · · (un + p)v1 · · · vp.

In Malvenuto’s talk, / = 2 and \ = 4.

It is not difficult to show that (S, /) and (S, \) are monoids, with same
unit element λ.
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SSym as a unital infinitesimal bialgebra

If α = α1α2 · · ·αn ∈ Sn, we define the permutation rev(α) as

rev(α) := αn · · ·α2α1.

Both operations / and \ are related as follows:

α\β = rev(rev(α)/rev(β))

As the operation rev is an involution, it defines a monoid map
rev : (S, \)→ (S, /).
The inverse map on permutations acts as an endomorphism on (S, /) and
as an anti-endomorphism on (S, \):

Lemma

Let α,β ∈ S. We have:
(a) (α/β)−1 = α−1/β−1;
(b) (α\β)−1 = β−1\α−1.
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SSym as a unital infinitesimal bialgebra

Theorem
1 The Hopf algebra SSym, together with the product /, is a
2-associative Hopf algebra.

2 The Hopf algebra SSym?, together with the product /, is a
2-associative Hopf algebra, isomorphic to (SSym, /).

3 The Hopf algebras SSym and SSym?, together with the product \,
are anti-isomorphic 2-associatives Hopf algebras.
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Second basis for SSym

Let P a partially ordered set (poset).

Given x, y ∈ P, con x < y, the Mobius function of P is the map
µ : P × P → P defined as:

µ(x, x) = 1;∑
x≤z≤y

µ(x, z) = 0.
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Second basis for SSym: using the Permutohedron

Weak Bruhat order on Sn

Covering relation:

ul (i i+ 1)u,

if the letter i appears before i+ 1
inside u.

Yannic VARGAS Algebraic structure of the Hopf algebra of double posets 23 / 44



Product rule via weak Bruhat order

Left weak Bruhat order: ≤`.

Right weak Bruhat order: ≤r:

u ≤r v⇐⇒ u−1 ≤` v−1.

Theorem (Loday-Ronco)

Let u ∈ Sn, v ∈ Sp. We have

GuGv =
∑

u/v≤`w≤`u\v

Gw and FuFv =
∑

u/v≤rw≤r v\u

Fw.
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Product rule via weak Bruhat order

Let u = 12, v = 21 ∈ S2. Then u/v = 1243, u\v = 3421 and
v\u = 4312. We have:

G12G21 = G1243 +G1342 +G1432 +G2341 +G2431 +G3421,

F12F21 = F1243 + F1423 + F1432 + F4123 + F4132 + F4312.
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Second basis for SSym: using the Permutohedron

(Left) weak Bruhat order on Sn

Covering relation:

ul (i i+ 1)u,

if the letter i appears before i+ 1
inside u.
New basis (Aguiar-Sottile):

Mu :=
∑
u≤v

µ(u, v)Fv.

M3412 = F3412 − F4312 − F3421 + F4321.
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Product and coproduct of monomials

A formula for the product of the M-bases is not obvious:

M312M1 = (F312 − F321) F1

= (F3124 + F3142 + F3412 + F4312)

− (F3214 + F3241 + F3421 + F4321)

=M3124 +M3142 +M3412 ++2M4312

2M4132 +M4123 +M4231.

The coproduct is easier.
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Indecomposables trees and Prim(SSym)

Prune w along its rightmost branch with all nodes above the cut smaller
than all those below to get w = u\v:

We say that w is indecomposable if only trivial prunings are possible.

Every w ∈ S is uniquely pruned into indecomposables.
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Indecomposables trees and Prim(SSym)

Theorem (Aguiar-Sottile)

∆(Mw) =
∑

w=u\v

Mu ⊗Mv.

A basis for Prim(SSym) is then

{Mw : w indecomposable }.

In particular, SSym is cofree.
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Other bases for SSym and SSym?

SSym-bases

Fu

Mu :=
∑
u≤` v

µ`(u, v)Fv

Eu :=
∑
u≤r v

Fv

SSym?-bases

Gu (Gu = F∗u)

Hu :=
∑
v≤`u

Gu (Hu =M∗u)

Nu :=
∑
u≤r v

µr(u, v)Gv
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Self-duality of SSym

Theorem (Malvenuto, Reutenauer)

The map Fu 7→ Gu−1 is an isomorphism of Hopf algebras between SSym
and SSym?.

Theorem (V.)

The map Eu 7→ Hrev(u) is an isomorphism of Hopf algebras between
SSym and SSym?.

In particular, SSym is self-dual.
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Primitive space from the 2-associative Hopf algebra

If V is a vector space, the tensor module
⊕
k≥ 0 V

⊗k is endowed with a
natural structure of unital infinitesimal bialgebra, , denoted by Inf(V),
considering the concatenation � and the deconcatenation ∆�:

(u1 · · ·ur)� (v1 · · · vs) := u1 · · ·urv1 · · · vs,

∆�(u1u2 · · ·uk) =
k∑
i= 0

(u1u2 · · ·ui)⊗ (ui+1ui+2 · · ·uk)

This is an important example of unital infinitesimal bialgebra.

Theorem (Loday, Ronco)

Any connected unital infinitesimal bialgebra B is isomorphic to
Inf(Prim(B)).
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Primitive space from the 2-associative Hopf algebra

The isomorphism is constructed using the following linear operator: if • and
∆ are the product and the coproduct of the unital infinitesimal bialgebra B,
let

e :=
∑
n≥ 0

(−1)n(idB − ιε)∗(n) ∈ End(B),

where ∗ is the convolution product constructed from the product • and the
coproduct ∆ of B. In other words, e(c) = 0 if c ∈ K and

e|B+ = idB − • ◦ ∆+ + •2 ◦ ∆2
+ − •3 ◦ ∆3

+ + · · · .
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Primitive space from the 2-associative Hopf algebra

From here, an isomorphism between B+ and Inf(Prim(B))+ is given by

x 7→ ∑
n≥ 1

e⊗n∆
(n−1)
+ (x).

The next proposition allows to construct a basis for the primitive space of a
unital infinitesimal bialgebra (B, •, ∆) from special elements of the monoid
(B, •). If (M, •) is a monoid, with unit element 1M, we say that x ∈M is
• -indecomposable if x 6= 1M and x = y • z implies y = 1M or z = 1M;
otherwise, we say that x is • -decomposable. We let Dec(M, •) and
Ind(M, •) the set of decomposables and indecomposables elements of the
monoid (M, •), respectively.
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Primitive space from the 2-associative Hopf algebra

Proposition

The operator e satisfies the following properties:
1 Im(e) = Prim(B);
2 Ker(e) = KDec(B, •);
3 e is an idempotent.

Corollary
Let (B, •, ∆) a unital infinitesimal bialgebra. The set

{e(x) : x ∈ Ind(B, •)}

is a basis of Prim(B).
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Primitive space of SSym, part II

Let e/ (resp. e\) the operator associated to the 2-associative Hopf algebra
(SSym, /) (resp. (SSym, \) (see (37)). The sets

{e/(Fα) : α ∈ Ind(S, / )} and {e\(Fα) : α ∈ Ind(S, \ )}

are bases of Prim(SSym).

By definition of e/ (resp. e\), the element e/(Fα), for α ∈ Ind(S, / )
(resp. the element e\(Fα), for α ∈ Ind(S, \)), is an alternating sum with
possibly many cancellations.
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Primitive space of SSym, part II

e :=
∑
n≥ 0

(−1)n(idB − ιε)∗(n)

e/(F3421) = F3421 − F1/321 − F12/21 − F231/1 + F1/1/21

+ F1/21/1 + F12/1/1 − F1/1/1/1

= F3421 − F1432 − F1243 − F2314 + F1243 + F1324 + F1234 − F1234

= F3421 − F1432 − F2314 + F1324

e\(F1432) = F1432 − F1\321 − F12\21 − F132\1 + F1\1\21

+ F1\21\1 + F12\1\1 + F1\1\1\1

= F1432 − F4321 − F3421 − F2431 + F4321 + F4321 + F3421 − F4321

= F1432 − F2431.
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Primitive space of SSym, part II

If n ∈ N, let α = α1α2 · · ·αn ∈ Sn and q = q1q2 · · ·qr ` n. For
1 ≤ k ≤ r, we denotes by αqk

the following subword of α formed by the
consecutives letters

αqk
:= αq1+q2+···+qk−1+1 αq1+q2+···+qk−1+2 · · · αq1+q2+···+qk−1+qk

.

For example, if q = q1q2q3 = 313 ` 7 and α = 2756143 ∈ S7, then:

αq1 = 275 , αq2 = 6 , αq3 = 143.
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Primitive space of SSym, part II

Let α ∈ Sn and • an associative and unitary product on S. Let
q = q1q2 · · ·qr ` n a composition. We say that α is a q-locally free of
relative order, or q-locally free (relating to •) if, for every 1 ≤ k ≤ r,
we have

1 st(αqk
) ∈ Ind(S, •);

2 st(αqk
αqk+1) 6= st(αqk

) • st(αqk+1).
We put LFq(S, •) the set of q-locally free permutations, considering the
monoid structure (S, •).
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Primitive space of SSym, part II

Let consider, for example, the fixed monoid (S, /) and the permutation
α = 45321. Then, α is 1211-locally free, as:

231 = st(453) 6= st(4)/st(53) = 1/21 = 132,
321 = st(532) 6= st(53)/st(2) = 21/1 = 213,

21 = st(21) 6= st(2)/st(1) = 1/1 = 12,
and each st(αk) ∈ Ind(S, /). The permutation α is also 32-locally free:

45321 6= st(453)/st(21) = 231/21 = 23154,
with each st(αk) ∈ Ind(S, /). However, α is not 1112-locally free: if
q = q1q2q3q4 = 1112, then

st(αq1αq2) = st(45) = 12 = st(4)/st(5).
The permutation α is neither 212-locally free: if q = q1q2q3 = 212, then
st(αq1) = st(45) = 12 is not indecomposable.
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Primitive space of SSym, part II

Theorem (C. Benedetti, D. Artenstein, A. Gonzalez, R. Gonzalez, J.
Gutierrez, M. Ronco, D. Tamayo, Y. Vargas)

Let (SSym, •) a 2-associative Hopf algebra structure on SSym. Let e• the
idempotent associated to (SSym, •). If α ∈ Ind(Sn, •), the primitive
element e•(Fα) is given by the following cancellation-free and grouping-free
formula:

e•(Fα) =
∑

q=q1···qr`n
α∈LFq(S,•)

(−1)rFst(αq1)•···•st(αqr)
.
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Relation between e\(Fα) and Mα

Every Mα is a primitive element if α ∈ Ind(S, \). Thus, e\(Mα) =Mα

and

Mα = e\ (Mα)

=
∑
α≤`β

µ(α,β) e\(Fβ).

As e\(Fβ) = 0 if β is \-decomposable, the sum above is given by
\-irreducibles permutations β greater than α. This condition induces a
subposet of the left weak Bruhat order. By Mobius inversion, we obtain the
following result.
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Relation between e\(Fα) and Mα

Proposition
Let α ∈ Ind(S, \). The primitive elements e\(Fα) and Mα are related by

e\(Fα) =
∑
α≤`β

β∈ Ind(S,\)

Mβ.

In particular, if α is a maximum \-indecomposable element for the left
weak Bruhat order, then e\(Fα) =Mα and

µ(α,β) =

 (−1)r if α ∈ LFq(S, \) and β = st(αq1)\ · · · \st(αqr),
for some composition q = q1q2 · · ·qr;

0 else.
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Thanks!
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