Complex Analysis

Organizers: F.Haslinger (Universität Wien), E-Mail: Friedrich.Haslinger@univie.ac.at
H.Upmeier (Universität Marburg), E-Mail: Upmeier@Mathematik.Uni-Marburg.de

Time: August - November 1999

There are three main topics in the activity:

1. Weakly pseudoconvex domains of finite type in Cn.

Weakly pseudoconvex domains of finite type were introduced in the attempt to generalize results and methods of the well understood case of strictly pseudoconvex domains, important special topics in this connection are: boundary behavior of the Bergman and Szegö kernel, investigation of the corresponding d-bar-Neumann problem, analytic hypo-ellipticity of pseudo-differential operators, CR-functions and manifolds.

2. Analysis on symmetric domains, discrete series representations and generalizations to non-pseudoconvex domains.

The modern representation theory of semisimple Lie groups uses complex analysis in an essential way. For example the discrete series can be realized in a uniform way via Dolbeault cohomology spaces on the underlying (convex) symmetric domains. Even more challenging is the generalization to non-convex pseudo-concave domains, leading to new types of Hardy and Bergman spaces closely related to twistor theory. The determination of the corresponding Szegö and Bergman kernels in terms of integral geometry is an active research area of great importance, e.g. to the Gelfand-Gindikin program (which expresses the character formulas of harmonic analysis in a uniform way, using Cauchy type >integral formulas). In interaction with topic 1.) of the workshop, the consideration of pseudo-concave symmetric (or tube) domains may bring new insights about Bergman kernels on general non-pseudoconvex domains.

3. Berezin quantization of complex phase spaces, Toeplitz and Hankel operators.

This very active research area at the crossroads of complex analysis and operator theory studies canonical operators associated with the Bergman and Hardy projections. The algebraic structure of these operators reflects deep geometric and complex analytic properties of the underlying domains. For example the compactness of the d-bar-Neumann operator (an important feature of finite type domains, cf. topic 1.) can be determined algebraically from the Toeplitz operator algebra, and using finer tools from operator algebras (composition series, foliation algebras), one can construct sophisticated invariants of complex domains and their boundary which occur naturally e.g. in the class of generalized Reinhardt domains. Very recently, these studies have been extended to the non-pseudoconvex setting involving "non-commutative" Hardy spaces, and a close interaction with topic 2.) is expected.

This program takes place at the same time as the program Applications of Integrability

Participants for whom the time of visit has already been fixed: >
A. Alldridge 11.09. - 02.10.
J. Arazy 01.09. - 30.09.
D. Barrett 22.08. - 04.09.
L. Coburn 13.11. - 28.11.
K. Diederich 19.09. - 03.10.
J. Duval 01.11. - 06.11.
R. Dwilewicz 10.11. - 18.11.
P. Ebenfelt 10.11. - 20.11.
M. Englis 14.11. - 20.11.
J.E. Fornaess 18.09. - 25.09.
G. Francsics 01.10. - 25.10.
B. Gaveau 13.08. - 25.08.
L. Geatti 11.10. - 17.10.
J. Globevnik 26.09. - 03.10.
P.C. Greiner 10.08. - 31.08.
U. Hagenbach 06.10. - 27.10.
G. Herbort 29.08. - 04.09.
A. Iordan 21.08. - 28.08.
D. Kalinin 20.09. - 01.10.
J. Kamimoto 10.10. - 18.10.
M. Kolar 10.11. - 20.11.
A. Koranyi 07.08. - 17.08.
S. Krantz 03.10. - 09.10.
B. Kroetz 14.08. - 22.08.
B. Lamel 13.11. - 20.11.
J. Leiterer 12.09. - 19.09.
I. Lieb 12.09. - 26.09.
K.H. Neeb 06.09. - 24.09.
Y. Neretin 07.09. - 30.09.
N. Nikolov 11.11. - 18.11.
T. Ohsawa 12.09. - 29.09.
B. Orsted 11.10. - 23.10.
P. Pflug 29.08. - 04.09.
M. Schlichenmaier      26.09. - 16.10.
A. Sergeev 11.10. - 01.11.
N. Shcherbina 28.08. - 04.09.
B. Stensones 26.09. - 03.10.
E. Straube 14.11. - 20.11.
D. Tartakoff 01.10. - 10.10.
A. Tumanov 18.08. - 01.09.
A. Unterberger 01.09. - 21.09.
H. Upmeier 15.08. - 30.09.
V. Vajaitu 20.11. - 27.11.
J. Wolf 30.09. - 21.10.
T. Wurzbacher 31.08. - 18.09.
G. Zampieri 05.11. - 12.11.
G. Zhang 16.08. - 27.08.